Lesson 2 Place Value -Part 1

Objective

- Identify the value and the place of each digit in a four-digit number.

Lesson Materials

- Place-value Cards (BLM)
- Place-value discs
- Place-value Organizer (BLM)

Think

Provide students with place-value discs and a Placevalue Organizer (BLM). Have them try to solve the Think problem independently.

Learn

Discuss the Learn examples. Ask students:

- What is meant by the "value" of each digit?
- What does a digit stand for, and what is its value?

Do

If needed, provide additional practice with different four-digit numbers and questions similar to (2) and (5) where the values given are not necessarily in order from greatest to least.
(5) It is important that students are able to compose the number when the numbers being added are not in order from greatest to least.

If students are confused, give them Place-value Cards (BLM) to make the number and think about what is missing.

Activity

- Place-value Hangman

Students play hangman using four-digit numbers.
Player One makes a four-digit number and draws 4 lines:
\qquad
\qquad
\qquad
Player Two tries to guess the number by asking yes/no questions like:

- Is there a 3 in the tens place?
- Is the digit in the hundreds place greater than 5 ?
- Is the value of the thousands digit less than 4 ?

Exercise 2•page 4

Do
Show 4,573 with place-value cards.

(a) The digit 4 in 4,573 is in the thousands place.
(b) The digit 5 in 4,573 stands for 5 hundreds.
(c) The digit 7 in 4,573 stands for $7 \ldots$ tens .
(d) The digit 3 in 4,573 is in the ones_place.
(a) The digit 5 in 9,085 is in the ones place.
(b) The digit 0 in 9,085 is in the hundreds place. Its value is 0 .
(c) The value of the digit 9 in 9,085 is 9,000 .
(d) The digit 8 in 9,085 stands for 8 tens.
10 1.2 Place Value - Pat 1
(3) Write the number.

(a) Write the number in words.

nine thousand, two hundred fifty five thousand, twenty-nine
(b) In what place is the digit 2 in each number, and what is its value? ones, 2 thousands, 2,000 hundreds, 200 tens, 20
(5) (a) $6,069=6,000+60+9$
(b) $7,402=7,000+400+$
(c) $5,300=5,000+300$
(d) $5,008=5,000+$
(e) $1,953=900+1,000+3+50$
(f) $8,808=8+800+8,000$

Objective

- Solve two-step word problems involving all four operations.

Lesson Materials

- Strips of paper

Think

Pose the problem in Think and have students draw models. Discuss the students' models.

Ask students:

- How is the problem similar to the ones we did yesterday? (It is about multiplying and dividing. I think I can draw a comparison model.)
- How is it different? (There are more steps in this one. It's longer.)

Learn

Have students discuss the bar model in Learn and compare their own models with the one in the textbook.

What information do we know?

- Mei has some ribbon and she cut off 2 pieces.
- The $2 n d$ piece of ribbon is longer than the 1 st piece.
- There is still ribbon on the spool.

What do we need to find?

- How long each piece of ribbon is.

Have students begin by drawing models to represent the 1 st and 2 nd pieces of ribbon, adding the third bar to represent the amount of ribbon left on the spool.

Students begin by subtracting the amount of ribbon left on the spool:

Lesson 9

2-Step Word Problems

Think

Mei had 30 m of ribbon.
She cut off 2 pieces of ribbon.
The second piece is 3 times as long as the first piece.
There is still 18 m of ribbon left on the spool.
How long is each piece?

4 units $\rightarrow 30-18=12$
1 unit $\longrightarrow 12 \div 4=3$
The first piece is 3 m long

128
4-9 2-Step Word Problems

30 m of Ribbon at First

Ribbon left on spool	Ribbon cut off
$\cdots \cdots \cdots \cdots \cdots \cdots$	

$30 m-18 m=12 m$
Then finding the length of the 2 pieces:

4 units $\longrightarrow 12 \mathrm{~m}$
1 unit $\longrightarrow 12 \div 4=3 \mathrm{~m}$
3 units $\longrightarrow 3 \times 3=9 \mathrm{~m}$

Do

(2) This model shows a part-whole representation of addition and multiplication. Ask students:

- Why are some of the parts equal and one is not?
- Could this be drawn with two models? (Or with a comparison model?)
(3) This problem is a sum and difference bar model. This pattern will be used throughout the Dimensions Math ${ }^{\circledR}$ program.

Sofia's thought provides a hint. If there are equal units, this becomes an easier problem. Dion can make 2 equal units by taking 5 from the total amount of dinosaurs.

To demonstrate Sofia's thoughts, use two strips of paper that are proportional in length to the bars in the textbook. Fold behind or tear off the piece of Alex's bar that represent 5 dinosaurs to show that what remain of Alex's bar and Emma's bar are equal units.

Once we find two equal units, we can divide to find the value of one unit.
(4)-5 When discussing these problems, ask students:

- Why are there two models?
- Are these comparison problems?

(3) Alex and Emma together made 23 dinosaurs. Alex made 5 more dinosaurs than Emma. How many dinosaurs did Emma make?

(4) Dexter bought 3 packs of foam brushes There were 4 thin brushes and 2 thick brushes in each pack
How many brushes did he buy? 1 unit $\rightarrow 4+2=6$ 3 units $\rightarrow 3 \times 6=18 \quad 18$ brushes Sita polished 23 rocks on Monday and 17 rocks on Tuesday. She put the rocks equally into 5 boxes. How many rocks are in each box? $23+17=40$
$40 \div 5=8$
8 rocks
(6) Discuss Alex's thought. Ask students:
- Why is Dion being used to represent 1 unit?

Additionally, this problem can be solved similarly to (3) by subtracting the difference between Mei and Dion, leaving 2 equal units.
\square
2 units $\longrightarrow 8$ turtles
1 unit $\longrightarrow 8 \div 2=4$ turtles
"Mei made $4+3$, or 7 , turtles."
7 Students may need to draw the two steps separately to see "3 times as many," and then find how many flowers in all.

(7) Asimah has 9 tulips.

She has 3 times as many daisies as tulips. She arranges 6 flowers in each vase. How many vases does she use?

(8) A pack of 5 paint pens cost $\$ 3$. Mr. Ikeda bought 20 paint pens.
How much did he pay? $20 \div 5=4$ (packs)

$$
4 \times 3=12 \text { (cost of } 4 \text { packs) }
$$

\$12
(9) Hudson has 4 times as many crayons as Elena. He has 24 more crayons than Elena does. How many crayons do they have altogether? 1 unit $\rightarrow 24 \div 3=8$
5 units $\rightarrow 5 \times 8=40 \quad 40$ crayons

Exercise 9 - page 119

1 unit $\longrightarrow 9$ flowers
4 units $\longrightarrow 4 \times 9=36$ flowers

$36 \div 6=6$. Asimah uses 6 vases.
8-9 Discuss the models students draw and any alternative methods they use to solve the problems.

Lesson 10 Practice

Objective

- Practice topics from the chapter.

Have students practice with activities from the chapter to ensure they know their multiplication and division facts for 2 through 5.

Provide additional support and practice opportunities as needed.
(5) A sample model is given. Students may draw the models differently to answer individual problems.

(a) 5 units $\longrightarrow \$ 10$

1 unit $\longrightarrow \$ 10 \div 5=\$ 2$
(b) 1 unit $\longrightarrow \$ 2$

10 units $\longrightarrow 10 \times \$ 2=\$ 20$
(c) 1 unit $\longrightarrow \$ 2$

3 units $\longrightarrow 3 \times \$ 2=\$ 6$
(3 units of yarn $=2$ units of glue)
1 unit of glue $\longrightarrow \$ 6 \div 2=\$ 3$
(e)

(f)

$$
28-1=27
$$

$?$									1

```
Lesson }1
Practice
```

P 10
(1) Find the value.
(a) $8 \div 4 \quad 2$
(b) $4 \times 7 \quad 28$
(c) $14 \div 27$
(d) $4 \times 4 \quad 16$
(e) $32 \div 48$
(f) 0×100
(g) $35 \div 57$
(h) $27 \div 3 \quad 9$
(i) $18 \div 36$
(j) $16 \div 28$
(k) $5 \div 5 \quad 1$
(I) $0 \div 100$

(2)

(a) 5×4
(b) $0 \quad \times 5=0$
(c) $24=8 \times 3$
(d) $3 \div 1=3$
(e) $0 \quad \div 5=0$
(f) $2=4 \div 2$
(3)

Find the quotient and remainder.
(a) $7 \div 2 \quad 3 R 1$
(b) $10 \div 3 \quad 3 R 1$
(c) $22 \div 4 \quad 5 R 2$
(d) $16 \div 53 R_{1}$
(e) $42 \div 10 \quad 4 R 2$
(f) $88 \div 10 \quad 8 R 8$
(g) $26 \div 38 R 2$
(h) $26 \div 4 \quad 6 R 2$
(i) $26 \div 5 \quad 5 \mathrm{R} 1$
(4) Are the following numbers odd or even?
(a) 12 even (b) 11 odd (c) 13 odd (d) 16 even
$12 \div 2=6 \quad 11 \div 2$ is $5 \mathrm{R}_{1} \quad 13 \div 2$ is $6 \mathrm{R} 1 \quad 16 \div 2=8$
(5) Katie is making decorative balls out of yarn to sell at the farmer's market on Kids Vending Day.
She bought 1 pack of balloons, 10 skeins of yarn, and 2 bottles of glue. She spent $\$ 10$ on the pack of balloons.
The balloons cost 5 times as much as 1 skein of yarn. The 2 bottles of glue cost the same as 3 skeins of yarn.

(b) How much did she spend on the yarn? Different models may be $10 \times 2=20 ; \$ 20$
drawn for each step.
(c) How much does 1 bottle of glue cost? $3 \times 2=6 ; 6 \div 2=3 ; \$ 3$
(d) How much did she spend in all? $10+20+6=36 ; \$ 36$
(e) Katie made 9 each of red, yellow, orange, and green balls. She made 4 brown balls
She displayed the balls by putting 5 in each bowl. $\quad 9 \times 4=36$ How many bowls did she use? $36+4=40$
(f) She sold all 9 red balls.

One buyer gave her $\$ 1$ extra as a tip. She received $\$ 28$ from selling the red balls. How much did she sell each red ball for?
$28-1=27$
$27 \div 9=3 ; \$ 3$
(6) (a)

[^0]1 unit $\longrightarrow \$ 3$
5 units $\longrightarrow 5 \times \$ 3=\$ 15$
$\$ 15+\$ 5=\$ 20$
Josef spent \$20.
(c)

(7) Arman represents the unit. Evan has 1 unit +2 more pinecones. Mila has twice as many as Evan, or 2 units +4 more pinecones. Altogether they have 4 units +6 more pinecones $=30$.

4 units $\longrightarrow 30-6=24$
1 unit $\longrightarrow 24 \div 4=6$ pinecones
(8) Encourage students to consider (7) to help draw a model.

Activity

Exercise 10 • page 123

- Multiplication and Division Kaboom

Materials: Kaboom Cards (BLM), multiplication and division fact cards for 0 to 5

Lesson 4 Multiplication with Regrouping Ones

Objective

- Multiply a two-digit number by a one-digit number with regrouping ones.

Lesson Materials

- Place-value discs

Think

Provide students with place-value discs and have them work the Think problem independently.

Have students write an equation and discuss how they found their answers.

Ask students:

- How is this problem different from the ones you solved in the previous lesson? (We have to regroup ones.)
- How is it the same? (We can still multiply the digits in each place.)

Discuss student strategies for solving the problem. Ask them what they can do when they have more than 9 in the ones column.

Learn

Work through the Think problem with students as demonstrated in Learn. Have students work along with place-value discs as the steps are modeled.

Emphasize how to record the regrouped tens in the written algorithm, and the fact that this regrouped ten is not multiplied again when multiplying tens, but added in after multiplying tens.

Discuss the regrouping from 12 ones to 1 ten and 2 ones. Ensure that students trade ten 1 -discs for one 10 -disc and place it above the rest of the 10 -discs. Help students to understand that the regrouped tens do not get multiplied. Students who struggle with this will have a difficult time with problems where regrouping occurs in both the ones and the tens place.

Ask students:

- What is similar about the ways the problem has been solved by Dion, Emma, and Sofia?
- Whose way is quickest and why? ("Emma's method, because you don't have to add again," or, "Sofia's method, because we can do it mentally.")

After the students have worked the problem with place-value discs, have them compare their methods from Think with the method shown in the textbook.

24

Meiran 72 mles

Do

(1) Struggling students may need to work these problems with place-value discs to see the regrouping step. Mei reminds students not to multiply the regrouped tens.
(5) Students can use any of the methods they have learned. Have them share why they chose their methods after solving the problem.

Exercise 4 • page 139

154

 $5-4$ Multiplicotion with Regrouping Ones
(4) What are the missing digits?
(a) \qquad (b)

(5) Find the value.
(a) 17×585
(b) 38×276
(c) 25×375
(d) 24×496
(e) 7×15105
(f) 5×1995
-

There are 18 sponsors for the race. Each sponsor donated 3 raffle prizes How many raffle prizes are there?

[^0]: (6) Josef made a total of 5 birdhouses and sold them all for $\$ 9$ each at the market on Kids Vending Day.
 (a) How much money did he receive? $5 \times 9=45$ \$45
 (b) The materials for each birdhouse cost $\$ 3$. The fee for the booth at the market was $\$ 5$. How much did he spend? $5 \times 3=15$ $15+5=20$ (c) How much profit did he make? $45-20=25$ \$25
 Altogether, they collected Mila $3 \times 2=6$
 (a) How many pinecones did Arman collect? 4 units $\rightarrow 30-6=24$
 1 unit $\rightarrow 24 \div 4=6$
 (b) How many pinecones did Mila collect $6+2=8$
 $8 \times 2=16$
 16 pinecones

 Shuffle fact cards and 3 Kaboom Cards (BLM) together and place them facedown in a pile. Players take turns drawing a card and stating the product or quotient.

 Students keep the cards they answer correctly, and return the ones that they answer incorrectly. When a student draws a Kaboom Card (BLM), he must return all of his collected cards to the pile.

 The player with the most cards at the end of the time limit is the winner.

