5. The total mass of a football and 10 tennis balls is 1 kg 5 g. If the mass of each tennis ball is 60 g, find the mass of the football.

Mass of 10 tennis balls =
$$60 \times 10$$

= 600 g

Mass of the football = 1 kg 5 g
$$-$$
 600 g = g

The football has a mass of ____ g.

6. A watermelon is 5 times as heavy as a grapefruit.

The grapefruit has a mass of 950 g.

How much heavier is the watermelon than the grapefruit?

1 unit = 950 g

Mass of watermelon = 5 units

The watermelon is 4 units heavier than the grapefruit.

4 units =
$$g = kg$$
 g

7. A goose has a mass of 3 kg 200 g. A duck is 1 kg 400 g lighter than the goose.What is the total mass of the goose and the duck?

14. The usual price of a CD player is \$43.

Its sale price is \$29.95.

How much less is the sale price than the usual price?

15. A sweater and a pair of jeans cost \$98.00.

The pair of jeans costs \$75.95.

How much more does the pair of jeans cost than the sweater?

16. Ms. Greene bought some vegetables for \$2.40 and a fish for \$3.70.

She had \$21.30 left.

How much money did she have at first?

17. Vinod saved \$33.50 last week.

He saved \$48.50 this week.

His target was to save \$100.

How much more did he need to save to meet his target?

18. Jeremy bought a camera case for \$28.25.

He gave the storekeeper \$50.00.

The storekeeper did some calculations on paper and returned Jeremy \$28.25.

Jeremy looked at the calculations and realized the mistake that the storekeeper made.

What was the storekeeper's mistake? Explain your answer.

What are the missing numerators and denominators?

(b)

To find an equivalent fraction, multiply the numerator and denominator by the same number.

$$\frac{\cancel{1}}{\cancel{3}} = \frac{\cancel{6}}{\cancel{6}}$$

$$\frac{1}{3} = \frac{3}{3}$$

Find the missing numerator or denominator.

(a)
$$\frac{1}{4} = \frac{1}{12}$$
 (b) $\frac{2}{3} = \frac{1}{9}$

(b)
$$\frac{2}{3} = \frac{1}{9}$$

(c)
$$\frac{1}{5} = \frac{10}{10}$$

(d)
$$\frac{1}{6} = \frac{3}{6}$$
 (e) $\frac{3}{5} = \frac{6}{6}$

(e)
$$\frac{3}{5} = \frac{6}{100}$$

(f)
$$\frac{3}{4} = \frac{6}{}$$

6. (a) How many halves are there in 2?

There are halves in 2.

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 2$$

(b) How many fourths are there in 2?

$$\frac{1}{4} + \frac{1}{4} = \frac{2}{4} = 2$$

There are fourths in 2.

1 = 4 fourths $2 = 2 \times 4$ fourths

(c) Fill in the missing numerators.

7. Write 3 as twelfths.

$$3 = \frac{1}{12}$$

(b)
$$4 = \frac{1}{3}$$

(c)
$$6 = \frac{1}{4}$$

(d)
$$5 = \frac{1}{8}$$

(e)
$$3 = \frac{1}{9}$$

(f)
$$5 = \frac{100}{100}$$

9. Fill in the missing numerator or denominator.

This same information can be shown in a line plot.

- (d) Compare the line plot to the bar graph.
 What different kinds of information are available in the two methods of presenting the data?
- (e) How many children have a mass of 39 kg?
- (f) How many children are heavier than 40 kg?
- (g) How many children are lighter than 35 kg?
- 4. The following line plot shows the height of some saplings in the center and the border of a stand of trees, measured to the nearest half of a foot.

Use the line plot to answer the following questions.

- (a) What is the height of the tallest sapling from the border area?
- (b) What is the height of the tallest sapling from the center area?
- (c) How many total saplings are shorter than $19\frac{1}{2}$ feet? How many of these are from the center area?
- (d) What possible conclusion could you make from this data?
- (e) How could you be certain that your conclusion is correct?