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Throughout the book, different mathematical concepts are referred to as 
“tools.” This analogy stems from Walter W. Sawyer’s profound comparison: 

“Mathematics is like a chest of tools: Before studying the tools in 
detail, a good workman should know the object of each, when it 
is used, how it is used, what it is used for.”1

It’s our prayer that this book will equip you to use algebra effectively.
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2001), p. 290.
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Preface  
Cokie Roberts once said that “as long as there is algebra in school, there will 
be prayer in school.” While I believe Cokie meant that as a statement about 
how algebra would make students pray for help in understanding it, it’s our 
hope that this curriculum will help students pray during their study of algebra 
out of wonder and awe at God’s handiwork instead.

Rather than simply presenting apparently meaningless facts and problems to 
solve, our aim in this program is to take students on a journey into discovering 
how math helps us describe God’s creation and gives us a glimpse into just how 
faithful and incredible He is. To do this, we’ll be synthesizing information that 
most students never hear about unless they pursue a degree in a technical field. 

It’s our earnest prayer that you will be blessed by this project.

Soli Deo Gloria, 
Katherine and Dr. Adam Hannon
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This complete Algebra 2 program not only teaches algebra, but also shows 
students why they’re learning concepts and how algebra’s very existence 
points us to God. Students will see algebra in action . . . and find their biblical 
worldview built along the way.

Are There Any Prerequisites? 

At a minimum, students should have completed an Algebra 1 course. 
Completion of a full course in geometry is recommended, but not required. 

Overall, students need to be familiar with the basics of algebra (working 
with algebraic fractions, exponents, and roots; combining like terms; basic 
factoring; formulas; basic finding of unknowns; and graphing of linear 
equations) as well as arithmetic (including converting units of measure, 
decimals, scientific notation, and using a calculator for exponents, roots, 
and operations inside of parentheses) and basic geometric ideas (such 
as perimeter, area, and volume of circles and simple polygons). A basic 
familiarity with these concepts is assumed. 

How Do I Use This Curriculum? 

This curriculum is designed so that it can be self-taught. Students should 
be able to read the material and complete assignments on their own, with 
a parent or teacher available for questions. The optional eCourse can limit 
the amount of reading and provide more guidance through the concepts.  
If teaching in a classroom, the text can serve as the basis for the teacher’s 
presentations, with the text available as a reference later for students. This 
Student Textbook is divided into chapters and then into lessons. The number 
system used to label the lessons expresses this order. The first lesson is labeled 
1.1 because it is Chapter 1, Lesson 1. 

2Principles of Algebra
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What Are the Curriculum’s Components? 

The curriculum consists of this Student Textbook, the Teacher Guide, and 
Solutions Manual. The Student Textbook contains the instructional lessons. 
The Teacher Guide contains an easy-to-follow schedule, as well as the 
worksheets, quizzes, and tests. The Solutions Manual contains a complete 
answer key (which includes solutions for most problems, as well as notes 
and explanations of many of the solutions). 

Optional Principles of Algebra 2 eCourse 
available from Master Books Academy — 
These videos offer presentations of lessons 
produced by the author and is an addition to the 
printed material. They’re great for students that 
are more visual/auditory in learning or need 
more walking through the concepts. Students 
using the videos should watch the video for 
that lesson then look over the text, studying it as needed. The eCourse is 
available through the Master Books Academy at MasterBooksAcademy.com. 

What Do I Need To Complete This Course?

The supplies needed for this course are as follows:

•	 Principles of Algebra 2: Applied Algebra from a Biblical Worldview Student 
Book

•	 Principles of Algebra 2 Teacher Guide 
•	 Principles of Algebra 2 Solutions Manual 
•	 Principles of Algebra 2 eCourse (optional) 
•	 Binder with Lined Paper or Other Note-Taking Method 
•	 Calculator (or Online Calculator) 
•	 A College Notebook 
•	 A Second Notebook or Additional Lined Paper 
•	 Index Cards (optional) 
•	 Graph Paper

Please see page 6 of the Teacher Guide for a more complete description of each 
item.

Where Do I Go Upon Completion? 

Upon completion of this course, students should complete a geometry course 
(if not already completed); if they have already completed geometry, students 
should be ready to begin a precalculus course or a college algebra program. 
Advanced students may also want to study for and take the College Algebra 
CLEP test. While this book does not cover everything on the test, advanced 
students may be able to use a CLEP study guide to fill in additional college-
level concepts (as well as to gain familiarity with the test format). 
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1.1 God and the Laws of Math
Math — particularly upper-level math like algebra — has become associated 
in many people’s minds with confusing rules and endless equations that seem 
disconnected from reality and pointless to learn.

But math — including algebra — is not disconnected from reality . . . and it’s 
not pointless to learn! Regardless of your past experience in math, we invite 
you to join us on an exciting journey. Yes, we will have to grapple with 
rules and equations, but we’ll do so while seeing how they apply outside 
of a textbook and how they proclaim the praises of the Creator.

Yes, you heard that right: Math declares praise to God. We live in a 
consistent universe — a universe so consistent, in fact, that we can 
record those consistencies and rely on them to hold true day after 
day, year after year. And that is exactly what we’re doing in math! 
Every time you jump up, you come back down to the ground (we 
call that the law of gravity). Every morning the sun rises and in 
the evening it sets (the earth rotates around its axis once every 
24 hours). Every time you plug a power cord into a wall outlet, 
you power its device (the laws of electromagnetism). All of these 
consistencies can be described using math.

For example, we can use letters to represent the consistent 
relationship between the force applied to an object (​F​), the 
velocity (​v​ — think speed in a certain direction) of that 
object, and the power (​P​) produced: ​P = Fv​. This relationship 

1Chapter
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 Foundation
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holds true over and over and over again because this universe operates in a 
predictable way, making modern science possible.

​P = Fv​
​​Power = Force ​(velocity)​​​

Now why is the universe so consistent? Why do mathematical laws hold true? 
Because that’s how God set up the universe, and day after day, year after year, 
He is continuing to keep His “covenant” with the “fixed order” around us — 
an order that math helps us describe.

Thus says the Lord: If I have not established my covenant with 
day and night and the fixed order of heaven and earth, then 
I will reject the offspring of Jacob and David my servant and 
will not choose one of his offspring to rule over the offspring of 
Abraham, Isaac, and Jacob. For I will restore their fortunes and 
will have mercy on them. (Jeremiah 33:25–26; ESV)

Do you catch what God is saying here in Jeremiah? He’s telling His people to 
look around and see how faithful He is to sustain the consistencies around 
them and telling them He’ll be just as faithful to keep His promise to them 
too. The very consistencies around us — which math helps us record — serve 
as a testimony to what a faithful, covenant-keeping God we have! Math should 
continually remind us that we can trust God.

Are you beginning to catch a glimpse of how exciting math can be? Every 
problem you solve and new consistency you learn about is shouting out at you 
that God is still faithful, keeping His covenant with the “fixed order” . . . and 
it’s that same faithful God who has promised to save all who call upon Him 
(Romans 10:13) and to complete the work He begins (Philippians 1:6). 

Math is ultimately a way of describing the “fixed order” God put in place and 
sustains (by the word of His power, no less! (Hebrews 1:3)). 

This relationship 
assumes the force is in 
the same direction as 
the velocity.
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For years now, you’ve been adding, subtracting, multiplying, and dividing 
numbers. All of these processes are known as mathematical operations. 
When we add, we’re really describing how God determined quantities to 
combine. When we multiply, we’re really describing how God causes sets of 
quantities to combine (4 times 3 means 4 sets of 3). All of math is a way of 
describing the “fixed order” God made all around us.

You’ve also likely learned about various properties in math. Properties, like 
operations, are ways of describing the “fixed order” God created and sustains. 
The key properties of arithmetic are below as a review — make sure you know 
them, as we will continue to build on them throughout this book.

Note that because of the consistent way God holds all things together, we 
can rely on these properties to hold true for all numbers and generalize the 
relationships using letters to stand for any number. 

Properties 

Commutative Property of Addition and Multiplication 
Order doesn’t matter.

Addition
a + b = b + a

Multiplication
ab = ba

The a and b could stand for any number — we’re just saying it doesn’t 
matter which number comes first, the answers will be the same. Note that ab 
means a times b — when we’re using letters to stand for numbers, we don’t 
have to bother to write out a multiplication sign; just putting them next to 
each other means to multiply them. 

Below is an illustration with actual numbers plugged in for the a and b 
placeholders.

Addition
1 + 2 = 2 + 1

3 = 3

Multiplication
2​​(3)​​ = 3​​(2)​​

6 = 6

Associative Property of Addition and Multiplication 
Grouping doesn’t matter. The grouping would be useful if there were different 
operations and we wanted the problem solved in an unusual order — but they 
don’t affect anything when it’s all addition or all multiplication, as we’ll get the 
same answer no matter how we group numbers being added or multiplied.

Addition
​​(a + b)​​ + c = a + ​​(b + c)​​

Multiplication
​​(ab)​​c = a​​(bc)​​

Again, here’s an example with numbers plugged in to the placeholders:
Addition

​​(1 + 2)​​ + 3 = 1 + ​​(2 + 3)​​
3      + 3 = 1 +      5

6 = 6

Multiplication
​​(2 • 3)​​4 = 2​​(3 • 4)​​ 

  ​​(6)​​4 = 2​​(12)​​
24 = 24

Note that the 
parentheses in 2(3) 
means to multiply. 
A number or symbol 
next to a parenthesis 
means to multiply by 
whatever is inside the 
parentheses.

Notice that we used 
several different 
ways of showing 
multiplication in this 
box — remember, ​×​, •, 
quantities right next 
to parentheses, and 
letters written next to 
each other all mean 
multiplication.
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Identity Property of Addition and Multiplication 
Adding 0 doesn’t change the value. Multiplying by 1 doesn’t change the 

value.
Addition
a + 0 = a
Example: 
2 + 0 = 2

Multiplication
1a = a

Example: 
1​​(2)​​ = 2

Properties of Division
Any Number (Except 0) Divided by Itself Equals 1.

​a ÷ a = 1​, provided a ​≠  0​
Division by Zero

Strictly speaking, we can’t divide by 0, as you can’t divide something by 
nothing. So, if you encounter something like 10 divided by a – 2 (which 

would be written ​​  10 _____ a − 2​​), note that a cannot equal 2, or else we would be 
dividing by 0, since 2 – 2 equals 0.  

Math Is a Useful Tool
Because math helps us describe the “fixed order” God put in place around us, 
it’s useful outside of a textbook! You may have noticed the word “applied” in 

the subtitle of this course. We want you to be equipped to use 
the concepts you learn outside of a textbook — to apply 

them.

Walter W. Sawyer compares mathematics to “a chest of 
tools” and urges students to know how to use them.

Mathematics is like a chest of tools: Before studying the 
tools in detail, a good workman should know the object of 
each, when it is used, how it is used, what it is used for.1

Tools come in all sorts of layers of complexity. There are very simple 
tools, such as a hammer.  And then there are tools like high-powered routers 
that serve a specific task. These latter tools take longer to learn how to use and 
serve a more specialized function, but they’re very powerful for what they do. 

Some of the concepts we’ll be studying in this course are like that high-
powered router. They are incredibly useful, but are more focused in their 
application. Thus you may not find yourself using all of them on a regular 
basis . . . or even at all, depending on the field you pursue. However, by 
learning how to use these high-powered tools, you’ll both better understand 
the complexities of God’s creation (and how the myriad of technological 
devices around us work) and be better equipped to think through other types 
of problems you might encounter. In other words, they can help you both 

In higher level math 
such as calculus, you 
will learn there are 
more nuanced ways 
of looking at these 
seemingly impossible 
divisions.  
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grow in appreciation for the Creator and learn problem-solving and critical-
thinking skills that can then be transferred to other areas of life and can help 
you complete the tasks God gives you to do. Above all, studying these tools 
will give you a deeper look at how math does, indeed, describe God’s creation 
and proclaim God’s praises. 

Introducing Algebra and Formulas
This course is specifically an algebra course, meaning we’re going to focus 
on the branch of math in which “letters and other general symbols are used 
to represent numbers and quantities in formulae and equations.”2 So you’re 
going to see a lot of letters standing for quantities.

While we’ll soon move on to not only using letters to stand for unknown 
quantities, then also determining the value of those “unknown quantities by 
means of those that are known,”3 but we’re also going to start in these first 
several chapters by reviewing the basics. 

One basic application of algebra you’ve been using for years is that of allowing 
us to represent formulas. A formula is simply “a mathematical relationship 
or rule expressed in symbols.”4 You’ve been using formulas for years. For 
example, to find the circumference of a circle, you multiply the irrational 
number ​π​, that begins 3.14, by the diameter.

Circumference = ​π​(diameter) 

Rather than writing all of those words out, we typically express this 
relationship as a formula. Notice that we’ve used letters to stand for the 
circumference and distance!

​C = πd ​

To use the formula, we replace the letters with the values for that particular 
circle. For example, if we know a circle has a diameter of 4 in, we would have 
this:

​C​ = ​π​​​(4 in)​​ ​≈ ​3.14​​(4 in)​​ ​≈​ 12.56 in 

Note: We used an approximate value of 3.14 for ​π​. When solving problems in this 
course, you can either use whatever rounded value you’ve memorized, or simply 
press the ​π​ button on your calculator to use the rounded value it has stored.

To use a formula, insert the appropriate values for the various letters and simplify!

As another example, suppose the diameter of a circular hot tub was 5.62  
ft. In that case, we would find the circumference like this:

 ​C​ = ​π​​​(5.62 ft)​​ ​≈ ​3.14​​(5.62 ft)​​ ​≈​ 17.6468 ft ​≈​ 17.647 ft

Notice that we used an 
approximately equal 
sign (​​≈​​). We did that 
because we used a 
rounded value for ​π​ — 
thus the answer is not 
an exact answer. In 
this course, we’ll use 
the approximately 
equal sign whenever 
we round just to make 
it clear we’re using 
rounded values. 
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Notice that we rounded to the 3rd decimal place. In this course, always round to the 
3rd decimal place unless instructed otherwise . . . and use the ​≈​ to show that you 
did! (If needed, see the endnote for a reminder on how to round.5)

Also notice that we included the unit of measure in the answer. Always include 
units of measure in the answer if one is given. Why? Because otherwise no one 
knows what the answer really is. 17.647 could be 17.647 centimeters, pounds, $ ... 
we need units to know what is being represented!

Keeping Perspective
As we embark on an exploration of math in this course, always remember that 
math is simply a way of describing the “fixed order” God created and sustains. 

Above all, remember that math is shouting out at you that just as faithful as 
God is to keep His covenant with the “fixed order” of creation, He will be just 
as faithful to everything else He’s said in His Word, the Bible. This should 
give you incredible peace if you’ve placed your trust in His way of salvation 
— Jesus — as God then promises to save and sanctify you. But it should give 
you great fear if you’re trusting in anything else for salvation, as God says 
that no one comes to God apart from Jesus (John 14:6).6 Make sure your trust 
is in Jesus (see Appendix A: Math’s Message). Then get ready for an exciting 
journey into exploring His “fixed order.”

Since this is an applied 
algebra course, you 
may find yourself 
working with units of 
measure more than 
in your previous math 
courses. We'll walk 
through how to work 
with them as we go.
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1.2 The Language of Mathematics
If we’re going to describe the “fixed order” around us, we need a language 
to use! And just like learning any spoken language takes work, so too does 
it take work to learn the language of mathematics. But once you know the 
language, it makes communication simple. We can think of the language side 
of mathematics as a convention, or “a way in which something is usually 
done, especially within a particular area or activity.”7

Just as words help us describe quantities and concepts, so can symbols. In 
math, though, we prefer symbols, since it’s a lot easier to work with them. 
(Imagine trying to add a million, four hundred thirteen thousand, seven 
hundred nineteen with four thousand, three hundred ninety without first 
rewriting it using symbols as 1,413,719 + 4,390.) 

We have symbols to stand for quantities with a known value, such as the 
symbol 1, 0.56, ​π​, etc. We also have symbols to stand as placeholders for 
unknown quantities, such as ​a​, ​v,​ ​V​, ​σ,​ etc. Notice that when we use a letter, 
the case matters. ​V​ is representing a different value than ​v​. (In fact, you 
might encounter them both in the same problem, with ​V​ standing for volume 
and ​v​ for velocity.)

You’ve already learned a lot of symbols — the plus and minus signs, different 
ways to multiply (see box), etc. You know that an equal sign (=) is an agreed 
upon way to represent that the quantities on both sides of the sign have the 
same exact value.

	 a + b 	 =	 b + a 

This symbol, though, is really just a convention for representing the 
consistency God created and sustains. Note that we could have used different 
symbols to show equality — in fact, below are a few that have historically 
been used.8 The symbol is simply part of the language system we’re using to 
communicate about the consistencies around us.
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Sometimes we want to compare quantities that are not equal. In that case, 
we’re working with an inequality. And you’ve already learned various 
symbols to help you describe inequalities.

6 does not equal 7; 
6 ≠ 7 

6 is less than 7;  
6 < 7

7 does not equal 6; 
7 ≠ 6 

7 is greater than 6;  
7 > 6

Different Symbols for Showing Multiplication
Using a ​×​ or • sign or putting quantities right next to parentheses are all ways of 
showing multiplication. The expressions below all mean 5 times 2.

​5 • 2​     ​5 × 2​     ​​5​(2)​​​
Note: Since the letter 𝑥 is used often for unknowns in algebra and is hard 
to distinguish from ​×​ when handwritten, be careful when using ​×​ to mean 
multiplication. Parentheses is often a better choice in algebra.

If we’re using letters to stand for quantities, we don’t need to include a 
multiplication sign (​ab​ means ​a​ times ​b​, and 5​b​ means 5 times ​b​). This is an 
agreed-upon convention to simplify expressing multiplication. 

When exploring the language side of mathematics, it’s important to keep 
in mind that symbols and other conventions can (and sometimes do!) 
vary. Just like language systems have varied since the Tower of Babel, the 
way we express mathematical concepts also varies (Genesis 11). Much of 
math consists of conventions: agreed-upon protocols or rules that aid us in 
communication. Man is only able to develop conventions because God made 
us in His image, capable of subduing the earth (Genesis 1:27).

Symbols for Units of Measure/Conventions  
in Showing Units
As we apply algebra, we’ll encounter numbers that have units of measure 
quite frequently. After all, if we’re weighing something, we need to know if 
that weight is in pounds, newtons, or some other unit. 

There are many different conventions regarding how to write units of 
measure. Appendix B: Reference Section lists many of the units of measure 
you’ll encounter and the abbreviations used in this course. It’s worth noting, 

Hint: When using the 
less than and greater 
than signs (< and >), 
put the smaller side 
of the sign with the 
smaller quantity. 
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though, that those abbreviations can (and do!) vary. For example, while we’ll 
abbreviate seconds as s, you may see it abbreviated elsewhere as sec. The 
abbreviations we choose are just conventions.

It’s also worth noting that we work with units of measure much the 
same way as we do with letters we’re using to stand for quantities, only 
we need to be careful to treat the whole abbreviation as the unit. For example, 
we view kg as standing for kilograms, not as a k multiplied by a g. 

Note that in this course, we will italicize letters standing for unknowns, but we will 
not italicize letters that are a unit of measure.

Let’s say we were to multiply 7 kg by 3 m. What do we do with the units of 
measure? We multiply them!

​​(7 kg)​​​​(3 m)​​ = 21 kg • m or 21 kg m (pronounced “21 kilogram-meters”)

Notice that with units, we didn’t just put the two units next to each other (i.e., 
we didn’t write kgm) like we would when using unknowns. It would be too 
easy then to think the entire unit was kgm, or that we meant k times g times 
m, rather than that we have a unit of kg times m. Some resources, though, will 
just put a space between the two units and leave them next to each other, like 
21 kg m. Either way clearly shows the unit of measure.

Now you might be wondering what a “kilogram-meter” is. Often the units 
we come to in problems don’t have a specific definition like a kilogram or a 
meter does. In this case, a kilogram-meter is simply the result of multiplying 
kilograms by meters. (We can use it to measure the work done by applying a 
force, such as to a pump.9)

Words Used in Math
Speaking of the language side of math, here are a few words we’ll use 
extensively as we explore the principles of applied algebra together. Be sure to 
familiarize yourself with them before we get started.

Constants – Quantities that have a fixed value (5 and ​π​ are constants).

Variables – Values whose value can vary in a problem (such as ​𝑥​).

Expression — An expression is “a collection of symbols that jointly express a 
quantity.”10 For example, 4 + 5 is an expression — 4, 5, and + are a collection 
of symbols that together express the quantity 9. Likewise, a + b is an 
expression. The a and b here are simply placeholders for numbers. 
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Equation — An equation is “a statement that the values of two mathematical 
expressions are equal (indicated by the sign =).”11

Simplify — When we refer to simplifying an expression or equation, we 
mean to express it as simply as possible. For example, 5 + 6 simplifies to 11. 

Unless instructed otherwise, simplify your answers as much as possible in this 
course.

Keeping Perspective
On your worksheet today, you’re going to review some conventions we’ll be 
following in this course. Make sure you’re familiar with them so that you can 
follow along as we go forward. And remember to be patient with yourself as 
you try to learn the language side of mathematics — it takes work to learn 
another language!

We’ll explore the 
definition of constants 
and variables further in 
Chapter 7.
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1.3 Understanding, Multiplying, and Dividing 
Fractions
Throughout this first chapter we’re going to be reviewing some common 
foundational conventions. Most of these conventions should be familiar, but 
we are hoping you will see them in a new light as we both review them and 
see how they apply outside of a textbook.  We’re going to start with fractions. 

Understanding Fractions
A lot of the confusion stems from the fact that the word “fraction” is used in 
different ways. A fraction can refer to

•	 a partial quantity, no matter how it’s written. Examples: ​​1 _ 4​​, 0.25, 25%

•	 a specific notation with a numerator (top number) showing the number 
of parts and a denominator (bottom number) showing the parts in a 

whole. Examples: ​​1 _ 4​​, ​​8a ___ c  ​​, ​​5 + d _____ 5 ​​

Historical Tidbit
Did you know that fractions at one point were written without a line? So ​​4 __ 5​​ would 

have been ​​4​ 5​​ instead. Leonardo Pisano “was one of the first to separate the 

numerator from the denominator by a fractional line.”12 Remember, while God 
created the real-life quantities and consistencies fractions describe, the notations 
and conventions used to describe them have (and still do!) vary. God made man 
in His image with creativity to develop new ways of exploring and describing His 
creation.

However, there’s a third meaning to the word “fraction,” and it’s this third 
meaning that will help you really understand how we use this notation to 
describe God’s creation. 

•	 Fractions are simply a convention for representing division. 

If I want to write 1 ​÷​ 4, I can do this more easily 

using a fraction line: ​​1 _ 4​​.

Now you may be used to thinking of ​​1 _ 4​​ as 
one part out of four . . . and it is. If you 
take 1 sandwich and you divide it into 

4 pieces, each piece is ​​1 _ 4​​ of the whole. 

The ​​1 _ 4​​ here could be thought of as the 
division problem or as the number of 
parts over the number of parts in the whole. 

 ​​1 _ 4​​ of whole 
The result of 1 
divided by 4.
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Understanding that the fraction line can be thought of as a division symbol 
is critical for algebra, as we typically won’t be using a division sign — just the 

fraction line. If we want to write ​5a ÷ b​, we will simply write ​​5a ___ b ​​. Likewise, 

to write ​9 ÷ 2​, we could write ​​9 _ 2​​ . Notice that this notation is more concise. It 
proves quite useful.

We call ​​9 __ 2​​ an improper fraction because its numerator (9) is greater than its 

denominator (2). While in other math courses you might have rewritten this as 

a mixed number (a number with a whole part and a fractional part — 4 ​​1 __ 2​ ​in this 

case), in algebra we avoid mixed numbers. The reason is that in algebra, we work 
a lot with letters, which get written right next to numbers to show multiplication. 

Thus it’d be easy to accidentally mistake 4 ​​1 __ 2 ​​ for 4 times ​​1 __ 2​​ rather than as 4 wholes 

and ​​1 __ 2​​. In this course, do not use mixed numbers.

Keeping this in mind, let’s briefly review how to multiply and divide fractions. 
It’s important that you thoroughly know how to work with them, whether 
dealing with known quantities or with letters standing for unknown quantities.

Multiplying Fractions
We’re used to thinking of multiplication in terms of repeated addition. If we 
want to figure out how much we’ll pay if each ticket costs $2 and we want 
3 of them, we multiply 3 times $2 to add up the cost of 3 tickets. But when 
we multiply by a fraction with a value less than 1, we’re finding a quantity of 

another quantity. For example, ​​1 _ 3​​(​2 _ 3​)​​ is finding a third of two thirds. We might 

need to find this if we were thirding a recipe that called for ​​2 _ 3​​ cup of flour and 
trying to figure out how much flour to put in instead.

How do we actually perform the multiplication? We multiply fractions by 
multiplying the numerators together and the denominators together.

​​1 _ 3​​(​2 _ 3​)​ = ​1​(2)​ ____ 
3​(3)​

​ = ​2 _ 9​​

​​2 _ 3​​ ​​1 _ 3​​ of ​​2 _ 3​​ is ​​2 _ 9​​ of the whole
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Notice that we can multiply the numerators and denominators when we have 
used a letter(s) to stand for an unknown value(s) too. Why? Because of the 
consistent way God governs all things!

Example: ​​ a __ 5c​​(​3 _ b​)​  =  ​ a​(3)​ _____ 
5c​(b)​

​  =  ​ 3a ___ 5bc​​ 

In the above example, note how we listed the 3 and the 5 first in our final answer, 
making the numerator 3a instead of a3. Also notice that we wrote 5cb as 5bc. 
Except in some science or application situations, it’s standard to list constant 
values in a term first, then all unknown quantities (represented by letters), in 
alphabetical order. 

Sometimes, we need to multiply a fraction by a whole number. Once again, 
if the fraction is less than 1, we’re finding a portion of another quantity. For 

example, ​​1 _ 3​​(30)​​ is ​​1 _ 3​​ of 30. If we want to figure out what ​​1 _ 3​​ of a class of 30 

college students is, we’d multiply ​​​1 _ 3​​(30)​​​.

On the flip side, if we wanted to multiply a recipe by 30 to make enough for a 

crowd and the recipe calls for ​​1 _ 3​ c​ of flour, we’d be finding ​30​(​1 _ 3​)​​ . . . which is 

finding repeated addition (adding ​​1 _ 3​​ thirty times).

And how do we complete the multiplication in either case? Well, since any 

number divided by 1 equals itself, we can think of 30 as ​​30 __ 1 ​​. Thus, we can 
multiply a fraction by whole numbers the same way we would fractions: just 
view the whole number or unknown as a numerator of a fraction with a 1 as 
the denominator.

​​1 _ 3​​(30)​ = ​1 _ 3​​(​30 _ 1 ​)​ = ​30 _ 3 ​ = 10​

(​​1 _ 3​​ of a class of 30 students is 10 students)

​30​(​1 _ 3​)​ = ​30 _ 1 ​​(​1 _ 3​)​ = ​30 _ 3 ​ = 10​

(taking ​​1 _ 3​​ c of flour 30 times results in 10 c of flour)

Example: 5​​(​a __ b ​)​​ = ​​5 _ 1​​(​a __ b ​)​ = ​5a ___ 1b ​ = ​5a ___ b ​​  

Example: 4​ac​(​ b __ d​)​​ = ​​4abc ____ d ​​ 

Notice that we listed the letters in alphabetical order. 4acb and 4abc 
mean the same thing, as multiplication is commutative and associative.

Example: ​𝑥​(​𝑦 _ z ​)​ = ​𝑥 __ 1 ​​(​𝑦 _ z ​)​ = ​𝑥𝑦 ___ z ​​

It’s not necessary to 
write out all of the 
steps shown in this first 
example. They’re just 
here to help clarify.
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Dividing Fractions
To divide by a fraction, we invert (i.e., take the multiplicative inverse 
of) and multiply. This “rule” is a shortcut to help us quickly find an answer. 
There is another way to do it . . . only this is simpler. And again, we can do it 
with either known or unknown quantities.

​​1 _ 2​ ÷ ​2 _ 3​ = ​1 _ 2​​(​3 _ 2​)​​ = ​​3 _ 4​​

inverted and multiplied

​​𝑥 _ b ​ ÷ ​2a _ 3 ​ = ​ 
​𝑥 __ b ​

 ___ 
​2a ___ 3 ​

​ = ​𝑥 _ b ​​(​ 3 _ 2a​)​ = ​ 3𝑥 _ 2ab​​

inverted and multiplied

Let’s think through for a minute what we’re really finding with division. 
Division is “the action of separating something into parts  
or the process of being separated.”13 This  
holds true for fractions as well, only it’s  
important to realize that when we divide  
by a fraction with a value less than  
1, we end up with a greater value. For  

example, ​30 ÷ ​1 _ 4​ = 30​(​4 _ 1​)​ = 120​ . One  

example of this is if we have $30 and  
divide it up into quarters where each quarter  

is ​$ ​1 _ 4​​ (i.e., ​25 cents = $0.25 = $ ​1 _ 4​ ​), we’d get 120 quarters.

Or consider the example we looked at under multiplication with thirding a 

recipe. If we need to third a recipe calling for ​​2 _ 3​​ c flour, we can either look at 

this as finding ​​1 _ 3​​ of ​​2 _ 3​​, or ​​1 _ 3​​(​2 _ 3​)​ = ​2 _ 9​​, or as dividing ​​2 _ 3​​ by 3. ​​2 _ 3​ ÷ 3 = ​2 _ 3​​(​1 _ 3​)​ = ​2 _ 9​​ . 

We get the same answer either way. And notice that, as with multiplication, 

we viewed the whole number (the 3) as ​​3 _ 1​​ and then inverted and 
multiplied. 

We explored the 
“rules” of working 
with fractions — 
such as inverting and 
multiplying — much 
more in Principles of 
Mathematics, Book 1. 
We’re just reviewing 
them briefly here, but 
please see the earlier 
book to see how each 
rule really does rest 
on the consistent way 
God causes objects to 
operate. Also note that 
if the numerator and 
the denominator fully 
divide by the value 
we’re dividing by as in  

​​32 __ 25​​ ​÷ ​8 _ 5​​, we can simply 

divide the numerators 
and the denominators:   

​​32 ÷ 8 ______ 25 ÷ 5​ = ​4 _ 5​​ . The 

“invert and multiply” 
rule comes in handy, 
though, when the 
numerators or the 
denominators don’t 
divide evenly, as in  

​​1 _ 5​ ÷ ​2 _ 3​​ . Were we to 

simply divide the 
numerators and 
denominators here, 
we’d end up with  

​​1 ÷ 2 _____ 5 ÷ 3​, or  ​
​1 _ 2​

 _ 
​5 _ 3​

​​  , which 

isn’t very simplified.  
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Multiplicative Inverse Review
Multiplicative inverse is a name to describe the number that, when multiplied by 
another number, equals 1. Some people also call it the reciprocal of a number, or, 
so long as the context is clear, simply the inverse. In a fraction, the denominator 
becomes the numerator and the numerator the denominator.

​​7 __ 2​​ is the multiplicative inverse of ​​2 __ 7​​ , as ​​7 __ 2​​(​2 __ 7​)​ = ​
7​(2)​

 _____ 
2​(7)​

​ = ​14 ___ 14​ = 1​

​​b __ 3 ​​ is the multiplicative inverse of ​​ 3 __ b​​ , as ​​b __ 3 ​​(​ 3 __ b​)​ = ​3b ___ 3b​ = 1​

(As we saw in Lesson 1.1, any quantity except 0 divided by itself equals 1. Note that 

here we’re assuming ​b​ does not equal 0; ​​3b ___ 3b​​ can’t be simplified if ​b = 0​.)

Example: ​​ 
​1 _ 5​

 __ 
​2 _ 7​

 ​​ = ​​1 _ 5​ ÷ ​2 _ 7​ = ​1 _ 5​​(​7 _ 2​)​​ = ​​1​(7)​ ____ 
5​(2)​

​ = ​ 7 __ 10​​ 

Example: ​​ 
​a __ 5 ​

 __ 
​3 _ b​

 ​ = ​a __ 5 ​​(​b _ 3​)​ = ​  ab ____ 
5​(3)​

​ = ​ab ___ 15 ​​

To keep things simple to grade, if a problem is given to you in fractional form and 
there’s a fractional part in the answer, give your answer as a fraction. If there’s a 
decimal in the problem and there’s a fractional part in the answer, then give the 
answer using a decimal. If a problem has both fractions and decimals, you can give 
your answer in either form.

Keeping Perspective
As you review fractions, remember that we work with them because they 
help us describe God’s creation. And the various methods and “rules” help us 
accurately describe the real-life principles God created and holds together. 

Remember, the fraction 
line means division. 

So ​​ 
​4 _ 5​

 __ 
​2 _ 7​

 ​​  means ​​4 _ 5​​ divided 

by ​​2 _ 7​​. 
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1.4 Equivalent Fractions and Simplifying 
Fractions
It’s time now to continue reviewing fractions by exploring the concept 
of equivalent fractions and simplifying fractions. Both of these concepts 
should already be familiar to you, but they’re so important that they are 
worth a review. Not only does simplifying fractions help us better represent 
information in an easier-to-process way (it is easier to instantly know what 

quantity is meant by ​​1 _ 3​​ than by ​​30 __ 90​​), but it also helps us add and subtract 
fractions . . . and even find unknown quantities! In short, it’s a skill we’ll be 
using a lot.

Equivalent Fractions
Recall from Lesson 1.1 that multiplying by 1 doesn’t change the value (the 
identity property of multiplication). Since any number divided by itself equals 

1, then ​​8 _ 8​​  or ​​a __ a​​ are fractions worth 1 (remember, ​​8 _ 8​​ means 8 divided by 8, and ​​a __ a​​ 
means a divided by ​a​). 

It follows that if we multiply a fraction by a fraction equal to 1, we’re 
not changing the value. Instead, we’re forming what we call an equivalent 
fraction.

Example: ​​4 _ 2​​(​8 _ 8​)​​ = ​​4​(8)​ ____ 
2​(8)​

​​ = ​​32 __ 16​​ = 2

Notice that multiplying by ​​8 _ 8​​ didn’t change the value. ​​4 _ 2​​ (which means 4 

divided by 2) equals 2, as does ​​32 __ 16​​ (which means 32 divided by 16).

Because of the consistent way God governs all things, this holds true for 
unknown quantities as well.

Example: ​​ c __ 8b​​(​a __ a​)​​ = ​​ ac ___ 8ab​​

Knowing this can help us both simplify and add and subtract fractions, as 
we’ll soon review.

Whole Numbers and Equivalent Fractions
We can form equivalent fractions for whole quantities too!

Example: 3​​(​2 _ 2​)​ = ​3​(2)​ ____ 2  ​ = ​6 _ 2​​

Notice that ​​6 _ 2​​, which represents 6 divided by 2, does indeed equal 3. 

Notice also that we viewed the 3 as a numerator. Since any number divided by 
1 equals itself, we could have rewritten 3 as ​​3 _ 1​​ to clarify this.

	 3​​(​2 _ 2​)​ = ​3 _ 1​​(​2 _ 2​)​ = ​3​(2)​ ____ 2 ​  = ​6 _ 2​​

Even though we don’t 
know a’s value, we 
know that we have 
some value divided 
by that same value. 
Because of the 
consistent way God 
governs all things, we 
know the answer will 
be 1 (as long as ​a ≠ 0​).

Note that we wrote 
the numerator as ac 
instead of ca and 
8ab instead of 8ba. 
Since multiplication 
is commutative and 
associative, the order 
and grouping doesn’t 
matter. We put the a 
first, though, as it’s a 
convention to list the 
letters in alphabetical 
order. Notice how it is 
easier to read ​​ ac ___ 8ab​​ than 

in ​​ ca ___ 8ba​​. 
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The same thing applies for unknowns as well.

Example: ​a​(​𝑥 __ 𝑥​)​ = ​a _ 1 ​​(​𝑥 _ 𝑥​)​ = ​a𝑥 ___ 𝑥 ​​

Simplifying Fractions
We often need to simplify fractions. A simple way to think about this is to 
think about completing some of the division ahead of time.

Remember, the fraction line means to divide. So, if we can complete part of 
that division, that helps simplify the fraction.

You’ve already been doing this for years. For example, when you’ve seen 

problems like ​​18 __ 4 ​​ , you see that both the numerator and the denominator 
can be divided by 2. So, you go ahead and complete that part of the division, 

simplifying the fraction down to ​​9 _ 2​​ .

We could also think of this as dividing both the numerator and the 
denominator by 2.

​​18 ÷ 2 _ 4 ÷ 2 ​  =  ​9 _ 2​​

Another way of thinking about it is that we’re looking at the factors that 
make up the number and then seeing what is repeated in the numerator and 
denominator.

​​18 _ 4 ​  =  ​9 • 2 _ 2 • 2​​

Notice we can then see that there’s a 2 in both the numerator and the 
denominator. This is really a fraction worth 1!

​​18 _ 4 ​  =  ​9 • 2 _ 2 • 2​  =  ​9 _ 2​​(​2 _ 2​)​​

And since multiplying by 1 doesn’t change the value, it follows that we can 

simply remove the ​​2 _ 2​​ . 

​​18 _ 4 ​  =  ​9 • 2 _ 2 • 2​  =  ​9 _ 2​​(​2 _ 2​)​  =  ​9 _ 2​​

​​18 __ 4 ​​ and ​​9 _ 2​​ represent the same amount. Notice that we didn’t have to rewrite 
the whole fraction; we could have just crossed out the 2 in the numerator and 
denominator.

​​18 _ 4 ​  =  ​9 • 2 _ 2 • 2​  =  ​9 _ 2​​

Simplifying fractions becomes super important when we’re dealing 
with unknowns, as it helps us solve problems we couldn’t otherwise. 
For example, suppose we had ​​ ac ___ 8a​​ and we knew the value of c but did not know 
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the value for ​a​. What can we do? Well, we know that, provided ​a​ is not 0, ​​a __ a​​ 
equals 1, as, due to the consistent way God governs all things, any number 
except 0 divided by itself equals 1. So, we can go ahead and complete that part 
of the division by crossing the ​a​’s out.

Unless told otherwise, you can assume when simplifying fractions in this course that 
the expression in the denominator does not equal 0.

​​ ac _ 8a​ = ​ ac _ 8a​ = ​ c _ 8​​

Another way to think about what we just did is dividing both the numerator 
and the denominator by the same amount.

​​ ac ÷ a _ 8a ÷ a​  =  ​ c _ 8​​

We can also think of it as removing the fraction worth one, since we know 
that won’t affect the value.

​​ ac _ 8a​ = ​ c _ 8​​(​a _ a​)​ = ​ c _ 8​​

Be careful! You can only complete some of the division in a fraction when you’re 

dealing with multiplication. If you had ​​a + c _____ 8a  ​​ instead of ​​ ac ___ 8a​​ , you couldn’t simply cross 

out the ​a​’s, as you’re being asked to add ​a​ and ​c​ and then divide that amount by ​8a​.  
It’s only when you can view the numerator and denominator as a product of factors 
(i.e., you’re dealing with multiplication!) that you can cancel out.

Keeping Perspective
Notice how in this lesson we built on the identity property of multiplication 
to help us form equivalent fractions and simplify them. As we dig deeper into 
math, we will be continuing to build. But always remember that everything 
rests on those consistencies God created and sustains!  

Unless instructed otherwise, always simplify fractions in this course 

as much as possible. ​​ 10 ___ 4𝑥​​ should be simplified to ​​ 5 ___ 2𝑥​​ in your answer. (We 
divided both the numerator and the denominator by 2.) Simplifying makes 
it easier to see what’s really going on at a glance and, as we mentioned at the 
beginning, will prove invaluable as we go forward. You'll get a chance on your 
worksheet to see some sample meanings for simplifying fractions, including 
seeing what portion of a city’s population strongly supports a candidate.
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1.5 Understanding Ratios and Proportions
One common application of fractions is to show ratios and proportions. As we 
explore these, we’re going to get a chance to apply all we’ve looked at so far 
regarding fractions!

Ratios
A ratio is “the relative size of two quantities expressed as the quotient of 
one divided by the other.”14 In other words, “ratio” is a fancy name for using 
division to compare quantities! And since fractions represent division, they 
make a convenient notation to use to represent ratios. 

If there are 25 students in a college class per only 5 computers, then the 
ratio between students and computers can be expressed as a fraction like 

this: ​​ 25 students ___________ 5 computers​​ . Note that we can simplify this fraction by completing the 

division, giving us ​​ 5 students __________ 1 computer​​ , which we would read as 5 students per 1 

computer. 

Typically, we don’t bother to write out a 1 before a unit of measure (such as 

computers). We would write ​​5 students ___________ 
computer

 ​​ and read it as 5 students per computer.

If you take 2 vitamins per day, we could write a ratio between the number of 

vitamins like this: ​​2 vitamins _________ day  ​​ or ​​2 vitamins _________ 1 day  ​​. 

Or say you’re making a recipe, and you know that you need 2 tsp of cumin  
per 4 c of water. We could write the ratio between the cumin and water like 

this: ​​2 tsp ____ 4 c  ​​.

Notice that we kept italicizing per up above. If you can word a problem 
using the word per, it’s a good indicator that you’re probably dealing 
with a ratio! Remember, a ratio is simply a comparison via division . . . which 
you can use a fraction to represent.

When written as a fraction, you can work with ratios just like you would with 
fractions!

Applying Ratios (and Multiplying Fractions, too!) 
Gear Ratios
Let’s look at an application of ratios. Along the way, we’ll also apply 
multiplying fractions! Consider the gears in the engine shown on the next 
page.

Notice how the small gear on the right has 7 teeth, or spikes, while the large 

gear in the middle has 30. The ratio between them is ​​ 7 __ 30​​, or 7 per 30. Let’s say 

There are other 
notations that can be 
used to express ratios. 
For example, we can 
write 25:5 instead 

of ​​ 25 students  ____________  5 computers​​ . But 

we’ll use a fraction in 
this course.
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that we wanted to know what portion of the large gear rotated 
each time the small one rotated. Notice the use of the word of. 
We need to use multiplication! We can find that by multiplying 
the rotation of the small gear by the rotation of the large gear. 
The small gear is making a complete rotation, so it’s going 
around 1 time. The large gear, though, is only going to make it 
through 7 out of its 30 teeth, as that small gear only has 7 teeth 
(and it is the small gear’s teeth rotating that cause the large 
gear’s teeth to rotate). Thus, we’d have this:

​1​(​ 7 _ 30​)​ = ​ 7 _ 30​​

Each time the small gear goes around 1 time, the large gear is 

going to go ​​ 7 __ 30​​th of the way around, as the small gear will push it 
through 7 out of its 30 teeth.

Now the middle gear that only has 7 teeth is attached to the large gear via a 
rod rather than being moved by its teeth. Each time the large gear goes around 
once, it goes around once as well. That also means that each time the initial 
small gear goes around once, the middle gear with 7 teeth only goes around  
​​​​ 7 __ 30​​th of the way around, as it’s moving via a rod attached to the large gear.

The final gear has 19 teeth. So each time the middle gear with 7 teeth goes 

around 1 time, the gear with 19 teeth will go around ​​ 7 __ 19​​th of the way, as the 
gear with 7 teeth will turn it through 7 of its 19 teeth.

​1​(​ 7 _ 19​)​ = ​ 7 _ 19​​

Keeping all this in mind, what portion of the 19-tooth gear rotates each time 
that initial 7-tooth gear rotates? Notice that we’re trying to find the portion of 
something. The word of is a good indicator we need to use multiplication. And 
we do! We just say that every time the initial 7-tooth gear rotates, the middle 

7-tooth gear goes ​​​​ 7 __ 30​​ of the way around, as it’s attached via a rod to the large 

gear . . . and that each time it rotates, the final 19-tooth gear goes ​​​​ 7 __ 19​​ of the 

way around. So now we need to find ​​​​​​ 7 __ 30​​ of ​​​​ 7 __ 19​​, or ​​​​ 7 __ 30​​​​​​(​ 7 __ 19​)​​​​.

​​ 7 _ 30​​​​(​ 7 _ 19​)​ = ​ 49 _ 570​​

Now we’ve found what is called the gear ratio of the whole system: a 
comparison via division that, in this case, shows us the portion of the final 
gear that rotates each time the initial gear makes one rotation.

And since God governs a consistent universe, we could use letters to stand for 
the various gears and show how to find the combined gear ratio (represented 
by an ​R​) for any size gear in this arrangement.15

7 
teeth

19 
teeth7 

teeth

30 
teeth
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​R  =  ​ 
​g​ 1​​ _ ​g​ 2​​

​​(​ 
​g​ 3​​ _ ​g​ 4​​

​)​​

This in turn could be simplified to this:

​R  =  ​ 
​g​ 1​​ ​g​ 3​​ _ ​g​ 2​​ ​g​ 4​​

​​

Now we have a formula we can use to help us find the gear 
ratio for any gear!

Our point here is not to fully understand gears (so don’t 
worry if you didn’t follow all the details), but rather to show 
an application of what we reviewed today. Knowing the gear 
ratio helps in designing engines . . . and fractions, multiplying 
fractions, and ratios help us in the process!

Conversion Ratios
One common application of ratios is in converting from one unit to another.  
If something takes 1,800 seconds, what portion of an hour is that? We can find 
that like this:

​1,800 s​(​1 min _____ 60 s ​ )​​(​  1 hr ______ 60 min​)​ = 0.5 hr​ 

Notice that min does not mean ​m​ times ​i ​times ​n​. It is an abbreviation standing for 
“minute” and is treated as a single unit.

What did we do? Well, we multiplied by ​​1 min _____ 60 s  ​​. This is really a fraction worth 
1, as both 1 min and 60 s represent the same time. When we convert units, we 
multiply by fractions worth 1 so as to not change the value (we’re multiplying 
both the numerator and the denominator by the same time, distance, weight, 
etc., only expressed in different units). These are known as conversion ratios. 

Notice that the units canceled out when we had one in the numerator and one in 
the denominator like unknowns did in the last lesson. We can work with units of 
measure the same way we do with unknowns, multiplying them, dividing them, etc. 
So when we multiplied to convert 1,800 s, we crossed out units that were the same in 
both the numerator and the denominator, as they would cancel each other out.

Proportions
Connected with the idea of a ratio is that of a proportion, which is a fancy 
name for 2 equal ratios. In other words, there are 2 equivalent fractions, each 
of which represents a ratio.

For example, a friend who used to work at a beverage company once told us 
that soda companies have carefully guarded recipes for how to make their 
beverages . . . and about how he had to use algebra extensively to scale the 

recipes. Say one recipe calls for ​​1 _ 4​​ cup lemon juice per 1 gallon of water. Notice 

that this could be written as a ratio: ​​ 
​1 _ 4​ c

 _____ 
1 gal

 ​​ . If they want to make a batch with 

g1

g4

g3

g2

	 Lesson 1.5  [31]



30 gallons of water instead, how many cups of lemon juice will they need? 
We’d have this proportion, where ​𝑥​ represents the cups of lemon juice needed.

	​​  
​1 _ 4​ c

 _____ 
1 gal

 ​ = ​  𝑥 _ 30 gal​​

We can figure out the cups of lemon juice needed by figuring out what value 
would be needed to make these ratios equivalent. Notice that 30 gallons 
is 30 times greater than 1 gallon, as ​30 ÷ 1 = 30​. So ​𝑥​ must also be a value 

that is 30 times greater than ​​1 _ 4​ c​! Let’s multiply both the numerator and the 

denominator of ​​ 
​1 _ 4​ c

 _____ 
1 gal

 ​​ to form an equivalent fraction with 30 gallons in the 

denominator.

	 ​​ 
​1 _ 4​ c

 _____ 
1 gal

 ​​(​30 _ 30​)​ = ​ 
​30 __ 4 ​ c

 ______ 
30 gal

 ​ = ​ 
​15 __ 2 ​ c

 ______ 
30 gal

 ​​

We would need ​​15 __ 2 ​​ cups. 

Notice that to figure out what value to multiply ​​ 
​1 __ 4​ c

 ______ 1 gal ​​ by in order to form an 

equivalent ratio with 30 gal in the denominator, we divided 30 gal by 1 gal. This 
told us that the denominator was 30 times greater, so we needed to multiply the 
numerator by the same amount so that we’d be multiplying by a fraction worth 1, 
thus forming an equivalent fraction. 

Note that sometimes we have to simplify a ratio in order to find the equivalent 
ratio.

Example: Find ​𝑥​: ​​ 7 __ 𝑥​ = ​21 __ 33​​

Notice that the numerator on the ratio on the right is 3 times the 
numerator of the ratio of the fraction on the left. That is, 7 • 3 = 21. So 
if we divide both the numerator and the denominator of ​​21 __ 33​​ by 3, we’ll 
form an equivalent ratio (we’re just simplifying the ratio!) with a 7 in 
the numerator, thus finding the value of ​𝑥​.

​​21 _ 33​ = ​21 ÷ 3 _ 33 ÷ 3​ = ​ 7 _ 11​​

​𝑥​ has to equal 11 in order to form an equivalent ratio with a 7 in the 
numerator.

Keeping Perspective
Ratios and proportions are very common applications of fractions. Want to 
describe out how much you’re making per hour if you make $8.50 per hour? 

Write a ratio: ​​$8.50 _____ hr  ​​. Want to make a triple batch of a solution to remove 
wallpaper? Set up a proportion! Remember, math is a useful tool.

Again, notice the 
use of the word per. 
Remember that if you 
can insert per into the 
problem, it’s a good 
indicator that you’re 
working with a ratio.
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1.6 Rates 
As we use math outside of a textbook, we end up needing to measure different 
aspects of the world, such as time, distance, weight, etc. To do this, we use 
units of measure — agreed upon periods of time, distance, weight, etc., we 
can use to compare with other units.

For example, we use a second to represent a certain period of time . . . and 60 
seconds to represent a minute . . . and 60 minutes to represent an hour.

In this lesson, we’re going to take a look at how to work with ratios of units 
of measure. The great news is that we can treat units of measure just like we 
would unknowns! So you’ll find we’ll be applying the same principles we 
looked at in the last couple of lessons.

But be careful. One of the biggest challenges of working with units of measure 
in algebra is remembering that multi-letter units need to be treated as a single 
entity. For example, min does not mean ​m​ times ​i​ times ​n​ . . . instead, it means 
minutes. 

Understanding and Simplifying Rates
Since we can work with units just like unknowns, we can end up with some 

interesting units! Speed equals distance divided by time, or ​s =​ ​​d __ t ​​. If your 
distance is in meters (m) and your time in seconds (s), then when you divide 
the two, you get ​​m __ s ​​ (i.e., meters per second).

Example: A robot travels a distance (​d​) of 10 meters in 2 seconds (​t​). What is 
its speed (​s​)?

	 ​s  =  ​d _ t ​​

	 ​s = ​10 m _ 2 s  ​ = ​5 m _ s  ​ = 5 ​m _ s ​​

Notice that we wrote the 5 in 5 ​​m __ s ​​ in front of the ​​m __ s ​​. We could have also written 
it in the numerator, as ​​5 m ____ s ​ ​. 

Both 5 ​​m __ s ​​ and ​​5 m ____ s ​ ​ mean the same thing. Think about it. View the units of measures 

like you would unknowns. 5 ​​m __ s ​​ then means 5 times ​​m __ s ​​. How would we complete that 

multiplication? We’d multiply 5 by the numerator, giving us ​​5 m ____ s ​ ​.

Notice also that we were dealing with a unit that was a ratio, or rate. (A 
rate is a specific type of ratio. The exact definition for what makes a ratio 
a rate varies, but the important thing is to know that all rates are ratios — 
comparisons of 2 quantities using division.)16 You’re used to working with 
units that are ratios whenever you see speed limits — they give the speed 

in miles per hour, or ​​mi ___ hr ​​. In other words, you’re looking at how many miles 

Notice that we 

simplified ​​10 m _ 2 s  ​​ just like 

we did other fractions!
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you can go in one hour. Likewise, ​​m __ s ​​ means meters per second, or how many 
meters you can go in a second. 

Converting Rates
You’ll sometimes need to convert rates into other units. For example, say 
you’re driving through Canada and are told the speed limit on a highway is  

80 ​​km ___ hr ​​. You want to know how many ​​mi ___ hr ​​ that is.

Here’s the math: 

80 ​​km ___ hr ​​(​  1 mi ___________ 1.609344 km​)​ = 80 ​km ___ hr ​​(​  1 mi ___________ 1.609344 km​)​ = ​  80  mi __________ 1.609344 hr​ ≈ 49.710 ​mi ___ hr ​​ 

It’s worth noting that, while speed limits are written to show how far you can go 
in one hour at that speed, they can also be written over different units of time. In 
fact, in measuring things in science we’ll often come up with different rates, such 
as the one we encountered in an earlier example:

​​10 m _ 2 s ​​

This is a speed of 10 meters per 2 seconds. 

Notice that we wrote the conversion ratio so that the km was in the 
denominator so it would cancel out with the km in the numerator. We 
simplified, just as we did with unknowns. Remember, we treat units of 
measure just as we would unknowns.

Always arrange your conversion ratio so the unit you want to replace will cancel out, 
leaving your answer in the desired unit.

Now, what if you want to change both the units in a rate? You’ll need to 
multiply it by more than 1 conversion ratio!

Example: Convert ​80 ​km ___ hr ​​ to ​​mi ___ s ​ ​.

​80 ​km _ hr ​​(​  1 mi ___________ 1.609344 km​)​​(​  1 hr _ 60 min​)​​(​1 min _ 60 s  ​)​ = ​  80 mi  ________________  
​(1.609344)​​(60)​​(60)​ s 

​ 

≈ 0.014 ​mi _ s ​​

More with Converting Rates
Let’s look at another conversion example. Notice that we rewrite the number 
as part of the numerator to avoid forgetting to multiply it.

Example: Convert 2 ​​m __ s ​​ to ​​  m ____ min​​.

​​2 m _ s  ​​(​  60 s _ 1 min​)​ = ​120 m _ min  ​ = 120 ​  m _ min​​

With ratios or rates, 
you can read the 
fraction line as per. 
For example, you can 

read ​​m __ s ​​ as “meters per 

second.” 
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Multiplying by a Rate
We can also end up multiplying units together. For example, force is a 
measure of mass (kg) times the acceleration ​​(​m __ ​s​​ 2​ ​)​​. So its unit is kg • ​​m __ ​s​​ 2​ ​​, 

which can also be written as ​​kg • m ______ ​s​​ 2​ ​ ​.

Dividing Units of Measure by Rates
Sometimes when solving problems we end up with crazy units of measure 
that need simplified. For example, in a future lesson we’ll work with a 
problem that will leave us with this fraction:

​​ 
40 mi

 ______ 
​35 mi _____ hr ​

 ​​

Yikes! How do we simplify this? 

Again, just remember to view the units like you would unknowns. We saw in 
Lesson 1.2 that when we have a fraction divided by a fraction, such as  

​​1 _ 5​ ÷ ​2 _ 7​​, which we would write as ​​ 
​1 _ 5​

 __ 
​2 _ 7​

 ​​, we complete the division by inverting and 

multiplying. 

​​ 
​1 _ 5​

 __ 
​2 _ 7​

 ​​ = ​​1 _ 5​​(​7 _ 2​)​​ = ​​1​(7)​ ____ 
5​(2)​

​ = ​ 7 __ 10​​

We can do that same thing with units of measure! ​​ 
40 mi

 ______ 
​35 mi _____ hr ​

 ​​ really means  

​40 mi ÷ ​35 mi _____ hr  ​​. We can complete this division by inverting the 
denominator and multiplying! 

​​ 
40 mi

 _____ 
​35 mi _____ 

hr
 ​

 ​ = 40 mi​(​  hr _ 
35 mi

​)​ ≈ 1.143 hr​

Notice that when we did that, the miles (mi) canceled out, leaving us with an 
answer in hours. We now know that it would take us 1.143 hr to go 40 mi at a 

speed of ​35 ​mi ___ 
hr

 ​.​ 

Once again, the key to working with units of measure is to view them like you would 
unknowns. 

If you recall from 
previous courses, ​​s​​ 2​​ 
means s • s. We’ll 
review exponents more 
thoroughly in the next 
chapter.
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Keeping Perspective
Hopefully that helped you feel more comfortable with rates. They prove very 
useful as we apply math. Even representing speed limits uses a rate (miles 
per hour). 

As you review rates and units of measure in general, remember that God 
knows the measure of all of creation. He is worthy of all our praise.

Who hath measured the waters in the hollow of his hand, and 
meted out heaven with the span, and comprehended the dust of 
the earth in a measure, and weighed the mountains in scales, 
and the hills in a balance? (Isaiah 40:12) 
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1.7 Adding and Subtracting Fractions
Adding and subtracting fractions is simple if you remember that the 
denominators must be the same. After all, we can only add and subtract 
divisions by the same quantity!

For example, say you have ​​1 _ 2​​ of a pie plus another ​​1 _ 3​​ of a pie left over from 
Thanksgiving dinner. What part of a pie altogether do you have? In other 

words, what is ​​1 _ 2​ + ​1 _ 3​​?

​​1 __ 2​​

​​1 __ 3​​

Note that we can’t just add the numerators, as the divisions are by different 
amounts. But if we multiply each fraction by a fraction worth 1 that would 
give a common denominator, then we can add them together. To find a 
common denominator, just multiply the denominators together. 2 • 3 = 6, so 
6 is a common denominator. Let’s multiply both fractions by a fraction worth 
one to reach that common denominator. 

​​1 _ 2​​(​3 _ 3​)​ + ​1 _ 3​​(​2 _ 2​)​ = ​3 _ 6​ + ​2 _ 6​​

​​3 __ 6​​

​​2 __ 6​​

Now we can add the numerators, as we’re dealing with divisions by the same 
amount. This would be the same as adding the pieces of the pie together.

​​3 _ 6​ + ​2 _ 6​ = ​5 _ 6​​

We have ​​5 _ 6​​ of a pie left.
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Adding and Subtracting Rates
Say a bowling ball is traveling at 8 ​​m __ s ​​. If it decreases its speed by 80 ​​  m ____ min​​ before 
it reaches the pins, how fast is it now going?

​8 ​m _ s ​ − 80 ​  m _ min​​

Notice that the units are fractions — we’re dealing with rates. Remember that 
we can write the measurements as part of the numerator.

​​8 m _ s  ​ − ​80 m _ min ​​

Notice that our denominators are different. When adding and subtracting 
fractions, the denominators must be the same (that is, they have to have 
what we refer to as a common denominator). Otherwise you’d be adding 
and subtracting divisions by different quantities!

Now, we could either solve this problem by converting ​​80 m _____ min ​​ to ​​m _ s ​​ or by 

converting ​​8 m ____ s  ​​ to ​​  m ____ min​​. Since we know that 60 s equals 1 min (see Appendix B: 
Reference Section for conversion ratios like this one that show us how many 
of one unit equal another), we’d have these conversions:

Converting to​​ ​​  m ____ min​​:

​​8 m _ s  ​​(​  60 s _ 1 min​)​ = ​ 480 m _ 1 min ​​

Converting to​​ ​​m __ s ​​:

​​80 m _ min ​​(​1 min _ 60 s  ​)​ = ​80 m _ 60 s ​ ≈ ​1.333 m _ s  ​ ​

Now we can subtract the fractions:

​​ 480 m ______ 1 min ​ ​​−​ ​​80 m _____ min ​ =​ ​​400 m ______ min  ​ = 400 ​  m ____ min​​ ​​8 m ____ s  ​ ​​−​ ​​1.333 m _______ s  ​ =​ ​​6.667 m _______ s  ​ = 6.667 ​m __ s ​​

Note: We didn’t have to write the 400 to the left of ​​  m ____ min​​ or 6.667 to the left of ​​m __ s ​​;  

an answer of ​​400 m ______ min  ​​ or ​​6.667 m _______ s  ​​ would be just as correct. It’s just that the 
numerical value to the left of the units is a little easier to read. 

Both ​400 ​  m ____ min​​ and ​6.667 ​m __ s ​​ represent the same rate — they are just using 
different units. One is measuring how many meters are traveled per minute, 
and the other how many meters are traveled per second. Always remember 
to keep track of your units. While you do not necessarily have to write 
them out in each step, be sure to think through units and include them in 
your answer!

More with Rates
While we’re talking about rates, it’s important to backtrack and point out that 
we can only add and subtract like units. So not only do the denominators 
need to be the same to add, but to really complete the addition in the 
numerator, you’ll need to make sure you have like units there as well. 

​​  60 s _____ 1 min​​ is a fraction 

worth one, as both 60 
seconds and 1 minute 
represent the same 
amount of time.
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For example, if one robot went 1 ​​ft __ s ​​ and another went 2 ​​in __ s ​​, we have the same 

denominator so we can add the numerators, giving us ​​1 ft + 2 in _________ s  ​​ . But we can’t 
add 1 ft and 2 in until we first convert to the same unit of measure. 

​​1 ft + 2 in _ s  ​ = ​12 in + 2 in ___________ s  ​ = ​14 in _ s  ​ = 14 ​in _ s ​​

Example: Add ​2 ​ft __ s ​​ and 5 ​​  in ____ min​​. Give your answer in ​​  in ____ min​​.

Notice that to completely add these and get the answer 

in ​​  in ____ min​​, we need to convert the ​2 ​ft __ s ​​ to ​​  in ____ min​​. How do we convert both 
units in the numerator and those in the denominator? The same way 
we have been, only we’ll have to multiply by 2 separate conversion 
ratios: one to convert each unit.

​2 ​ft _ s ​​(​  60 s _ 1 min​)​​(​12 in _ 1 ft  ​)​ = 2​ft _ s ​​(​  60 s _ 1 min​)​​(​12 in _ 1 ft ​ )​ = ​1,440 in _ min  ​ = 1,440 ​  in _ min​​

Conversion ratio to convert seconds to minutes

Conversion ratio to convert ft to in

Notice that we arranged the conversion ratio however needed to get 
the appropriate units to cancel out, leaving the requested units.

It’s worth noting that we could have done this in 2 steps — converting 
the feet to inches, and then converting the seconds to minutes. But it 
saves time to do it all in one step.

Now, we can add this to ​5 ​  in ____ min​​ and get a final answer of ​1,445 ​  in ____ min​​.

Dealing with Unknowns
Once again, because of the consistent way God governs all things, we can 
apply what we know about adding fractions together to unknowns as well! 
As with known values, the denominators have to be the same, so we’re 
adding or subtracting divisions by the same quantity. 

Example:  Simplify ​​a __ 2 ​ – ​1 _ b​​ . 

Example Meaning: The gear ratio of one gear minus the 
gear ratio of another gear, where the values ​a​ and ​b​ are not 
known. 

	​ ​ab _ 2b ​ – ​ 2 _ 2b​ = ​ab − 2 _ 2b ​​

Do you see what we did? In order to get 2b as the denominator in 
the first fraction, we had to multiply it by ​​b _ b​​ . This was multiplying by 
a value worth 1, which doesn’t change the value (the identity property of 
multiplication).

We rewrote 1 ft as  
12 in, since both 1 ft 
and 12 in represent the 
same length.
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	​​ a __ 2 ​​(​b _ b​)​ = ​ab ___ 2b ​​

In order to get 2b as the denominator in the second fraction, we had to 

multiply it by ​​2 _ 2​​, which is also worth 1. 

	​​ 1 _ b​​(​2 _ 2​)​ = ​ 2 __ 2b​​

We then combined them by subtracting the second numerator from the first. 
Since we can’t actually complete the subtraction of ​ab​ minus 2 as we don’t 
know the value of ​ab​, we leave it written as a subtraction.

	​​ ab ___ 2b ​ – ​ 2 __ 2b​ = ​ab – 2 _____ 2b  ​ ​ 

If you’re not sure what denominator both fractions can be written as, just multiply 
the denominators together to find a common denominator to use. Notice that the ​
2b​ denominator we used above was 2 (the denominator of the first fraction) times ​b​ 
(the denominator of the second fraction).

Example: Simplify 2 + ​​ a __ n​​ .

Example Meaning: A $2 base allowance 
plus whatever additional amount our 
parents decide to give us divided by the 
number of siblings they’re dividing the 
additional amount among.

We need to write 2 as a fraction of ​n​. 
Remember from the last lesson that we can 
think of 2 as ​​2 _ 1​​.

	 ​​2 _ 1​ + ​ a __ n​​

We’ll multiply the first fraction by ​​n __ n​​, a fraction worth 1 (provided n doesn’t 
equal 0), to get a common denominator. We'll then be able to add the 
numerators.

​​2 _ 1​​(​n _ n​)​ + ​ a _ n​ = ​2n _ 1n​ + ​ a _ n​ = ​2n _ n ​ + ​ a _ n​ = ​2n + a _ n ​​

Keeping Perspective
Hopefully a lot of what we’ve been exploring with fractions is review for 
you. If not, take some extra time to make sure you understand fractions and 
units of measure, as we use them extensively when we apply math to help us 
describe God’s creation. 

Notice that we rewrote ​
1n ​as simply ​n​.  
We were applying the 
identity property of 
multiplication again, 
knowing that any 
number times 1 equals 
itself.
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1.8 Negative Numbers
As we apply math, we encounter quantities that are the opposite of other 
quantities. We call these negative numbers. For example, if you owe $3, you 
have ​–$3​, which is the opposite of having $3. Or if you travel in the opposite 
direction of some landmark, you could say you were traveling in the negative 
direction. 

– +

Adding and Subtracting with Negative Numbers
It can be helpful to picture a number line when adding and subtracting 
negative numbers. 

Example: Find 8 – 10.

If we start at 8, and go 10 spaces to the left, we’ll get to 0 after 8 spaces. 
But we still have 2 to go! Thus our answer will be –2.

	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9

Note that you can view subtraction as an addition of a negative number.

Example: (5 – 𝑥) = (5 + – 𝑥)

It’s also worth noting that when you add a number to its opposite, you end up 
with 0.

Example: –5 + 5 = 0 

	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9

Example: – a + a = 0
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Multiple Negative Signs
View each negative sign in front of a number as the opposite of. 

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

​− 4​​​ = the opposite of 4 = ​− ​4​​

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

​− ​​​(− 4)​​ = the opposite of the opposite of 4 = 4​​

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

​− ​​​(− ​(− 4)​)​​ = the opposite of the opposite of the opposite of 4 = ​− ​4​​

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

​− ​​​(− ​(− ​(− 4)​)​)​​ = the opposite of the opposite of the opposite of the opposite of 4 = 4​​

Two negative signs yield a positive answer, three a negative, etc. In fact, you 
can easily figure out whether the final number is a negative or a positive by 
saying “negative, positive, negative, positive . . . ” as you read off the negative 
signs. If you end with a negative, the answer is negative; if you end with 
a positive, the answer is positive. In short, if there are an odd number 
of negative signs, the answer will be negative; an even number, the 
answer will be positive. 

Multiplying and Dividing Negative Numbers
The negative, positive, negative, positive, etc., rule (i.e., odd number of 
negative signs means negative answer, and even means positive answer) holds 
true both with negative signs in front of a value and when multiplying or 
dividing.

In fact, one very helpful way of thinking about negative signs in front of a 
number or unknown is as a multiplication by ​–1​. After all, we can multiply 
any number by 1 without changing the value. Thus –a equals –1a. In fact, 
many find it useful to think of –a as –1 times a, or ​​(–1)​​a. Viewing it as a 
multiplication by –1 can help in determining if the negative signs cancel out 
or not. Remember that each –1 takes the opposite, making it negative, positive, 
etc. 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Odd numbers cannot 
perfectly divide by 2, 
while even numbers 
can. See Lesson 3.2 
for a more precise 
definition.
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Example: Simplify –​​(–​(–a)​)​​.

–​​(–​(–a)​)​​ = ​​(–1)​​​​(–1)​​​​(–1)​​a = ​​(–1)​​a = –​a​

	 The opposite of the opposite of the opposite of a is –a.

Read negative, positive, negative.

Odd number of signs ​→​ negative answer

Example: Find –​a​ if ​a​ is –3.

Substitute –3 for ​a​: –​​(–3)​​ = ​​(–1)​​​​(–1)​​3 = 3

The opposite of the opposite of 3 is +3!

Even number of signs ​→​ positive answer

Example: Simplify ​​–4 _ –b​​ .

 ​​− 4 ___ − b​ = ​​(− 1)​​(4)​ ________ 
​(− 1)​​(b)​

​ = ​4 _ b​​

Here we have a negative number divided by another negative number. 
So, our answer ends up with two negative signs . . . the opposite of the 
opposite . . . which will be positive.

Even number of signs ​→​ positive answer

Another way of thinking about this is that the negative signs cancel 
out, as one is in the numerator and the other in the denominator. 

​​− 4 _ − b​ = ​​(− 1)​​(4)​ _ 
​(− 1)​​(b)​

​ = ​4 _ b​​

Example: Simplify – ​​ 4 _ –b​​ . 

​− ​  4 ___ − b​ = ​(− 1)​​  4 ________ 
​(− 1)​​(b)​

​ = ​4 _ b​​

Even number of signs ​→​ positive answer

Another way of thinking about this is that we have a positive number 

(4) divided by a negative number (–​b​). So, the ​​  4 ___ − b​​ part will be negative 
. . . but then the negative sign in front tells us to take the opposite of 
that, which would make the final answer positive.

It’s not necessary to 
write out all the –1s  
. . . they’re included 
just in case that’s a 
helpful way for you to 
think of the negative 
signs.

	 Lesson 1.8  [43]



You can also think of there being a negative sign in the numerator and  

one in the denominator, as ​​(− 1)​ ​  4 ________ 
​(− 1)​​(b)​

​ ​ can be rewritten as ​​  ​(− 1)​4 ________ 
​(− 1)​​(b)​

​​. 

The –1s would then cancel out.

Example: Simplify ​− ​​​–4 _ –b​​ .

​− ​− 4 ___ − b​ = − 1​(​​(− 1)​​(4)​ ________ 
​(− 1)​​(b)​

​)​ = − 1​(​4 _ b​)​ = − ​4 _ b​​

Notice that we had a total of 3 negative signs. Thus, we had the opposite 
of the opposite of the opposite, or a negative answer.

Odd number of signs ​→​ negative answer

Another way of thinking about this is that –4 divided by –​b​ will be 
positive, and then the negative sign in front will make that negative 
again.

Example: Simplify ​​3𝑥 _ 2 ​ – ​ 1 _ –2​​ .

 ​​3𝑥 _ 2 ​ − ​  1 ___ − 2​ = ​3𝑥 ___ 2 ​ + ​1 _ 2​ = ​3𝑥 + 1 ______ 2 ​​

We could have rewritten ​− ​  1 ___ − 2​​ as ​​​(− 1)​​(​  1 ______ 
​(− 1)​2

​)​​​. Notice that then 

we’d have a –1 in the numerator and the denominator . . . which would 
cancel out. Thus we end up with positive ​​1 _ 2​​ to add to ​​3𝑥 ___ 2 ​​. 

Keeping Perspective
Negative numbers give us a way of describing that a quantity is the opposite of 
something else. We can use them to represent going in the opposite direction, 
owing money (which is the opposite of having it — examples would be 
money you owe on your rent or mortgage), or current flowing in the opposite 
direction. Make sure you’re comfortable with working with negative numbers, 
as they’ll come up both throughout this course and in real life.
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1.9 Chapter Synopsis 
Well, we’ve reached the end of our first chapter together. In this chapter, we 
reviewed core concepts that we will use again and again and again and again 
(did we say that enough times?) as we dig into algebra. All of these concepts 
rest on the consistent way God governs all things. Our very ability to rely on 
multiplication to always work the same way, for example, reminds us that God 
is faithful day after day to govern all things consistently. And He’ll be just as 
faithful to everything else He’s said in His Word!

At the end of each chapter, there’s typically a review day. But since this 
chapter was a review chapter, there’s no review day. Take just a minute, 
though, to look over the key skills from this chapter to make sure you’re ready 
for the quiz. 

Key Skills for Chapter 1

Understand and apply key properties of addition and multiplication. 
(Lesson 1.1)

•	 Commutative (order doesn’t matter): 
​a + b = b + a​ 	 (for addition)
​ab = ba​ 	 (for multiplication)

•	 Associative (grouping doesn’t matter): 
​​​(a + b)​ + c = a + ​(b + c)​​​	 (for addition)
​​​(ab)​c = a​(bc)​​​ 	 (for multiplication)

•	 Identity (can multiply by 1 or add 0 without changing value):
​a + 0 = a​ 	 (for addition)
​1a = a​ 	 (for multiplication)

Know that any number (except 0) divided by itself equals 1 and that 
we cannot divide by 0. (Lesson 1.1)

Examples:	​​a __ a​​ = 1, provided ​a ≠  0​

In ​​𝑥 __ a ​,​ ​a​ cannot equal 0.

Know how to insert known values into a formula. (Lesson 1.1)

Understand the concept of equality and inequality. (Lesson 1.2)

Know various terms (including expressions, equations, and simplify) 
and conventions (such as that ​5𝒙​ means 5 times ​𝒙​ and that capital 
and lowercase letters cannot be used interchangeably — ​V​ is a 
different unknown than ​v​). (Lesson 1.2)

Understand fractions and how to work with them. (See chart; Lessons 
1.2–1.4, 1.7)
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Understand ratios and proportions and how to work with them. 
(Lesson 1.5)

•	 Ratios are comparisons via division; we can write them as a fraction and 
work with them like fractions.

•	 A proportion is 2 equal ratios; you can find missing values in a 
proportion by figuring out what the value would have to be to form an 
equivalent fraction. 
Example:	 ​​ 7 __ 𝑥​ = ​21 __ 33​;  𝑥 = 11​

(The first fraction has to be ​​ 7 __ 11​​ to form an equivalent fraction with 7 in 
the numerator — if we multiplied both the numerator and denominator 

by ​​3 _ 3​​, we’d get ​​21 __ 33​​.)

Understand how to work with units of measure and rates. (Lesson 1.2, 
Lesson 1.6) 

•	 Multiplying with units (make sure you maintain the units). 
Example:	 ​​​(7 kg)​​(3 m)​ = 21 kg • m ​​

•	 Treat units of measure like you would unknowns, only viewing the entire 
unit as a single unknown. For example, treat min (the abbreviation for 
minute) as a single value, not as ​m​ times ​i​ times ​n​. 

•	 Converting units (multiply by a conversion ratio worth 1) and 
simplifying units of measure. 

Example:	 80 ​​km ___ hr ​​(​  1 mi ___________ 1.609344 km​)​ = 80 ​km ___ hr ​​(​  1 mi ___________ 1.609344 km​)​ = ​  80 mi __________ 1.609344 hr​  

≈ 49.71 ​mi ___ hr ​​ 

•	 You can only add and subtract like units. 

Example:	 ​​1 ft + 2 in _ s  ​ = ​12 in + 2 in ___________ s  ​ = ​14 in _ s  ​ = 14 ​in _ s ​ ​

Understand negative numbers and how to work with them.  
(Lesson 1.8)

•	 Each negative sign means “the opposite of.” 
Odd number of negative signs = negative answer
Even number of negative signs = positive answer
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•	 Addition and Subtraction
Add and subtract by thinking about how many times it takes to get to 0 
and then how much beyond 0 you have to go.
Examples:	​3 − 4 = − 1​

𝑥 – ​​(– 𝑥)​​ = 𝑥 + 𝑥 = 2𝑥
You can view subtraction as an addition of a negative number.
Example:	 ​​(5 – 𝑥)​ = ​(5 + –𝑥)​​
When you add a number to its opposite, you end up at 0.
Example:	 –​a + a = 0​ 

•	 Multiplication and Division
When multiplying and dividing or looking at multiple negative signs in 
front of an expression, an even number of negative signs gives a positive 
result, and an odd number of negative signs gives a negative result. You 
can also read off negative, positive, negative, etc.
Examples:	​​​(–1)​​(–𝑥)​ = 𝑥​​

​​–​(6 – 𝑥)​ = – 6 + 𝑥​​

​​− 7𝑥 ____ 2  ​ = −  ​7𝑥 ___ 2 ​​

​− ​ 7𝑥 ___ − 2​ = ​7𝑥 ___ 2 ​​

​− ​− 7𝑥 ____ − 2 ​ = − ​7𝑥 ___ 2 ​​

Fractions 
Fractions represent division.

•	 Addition
Denominators must be the same; then add numerators. 
Example:	 ​​a _ b ​ + ​ c _ b​ = ​a + c _ b ​​

•	 Subtraction
Denominators must be the same; then subtract the second numerator 
from the first. 
Example:	 ​​a _ b ​ − ​ c _ b​ = ​a − c _ b ​​

•	 Multiplication
Multiply numerators and denominators. 

Example:	 ​​a _ b ​​(​ c _ d​)​  =  ​ ac _ bd​​

Treat non-fractional quantities as if they had a 1 in the denominator, as 
dividing by 1 doesn’t change the value.

Example:	 ​𝑥​(​a _ b ​)​ = ​𝑥 _ 1 ​​(​a _ b ​)​ = ​𝑥a _ 1b ​ = ​𝑥a _ b ​​
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Chapter 1 Endnotes:

•	 Division
Invert number being divided by and multiply.

Example:	 ​​ 
​a __ b ​

 __ 
​ c _ b​

 ​ = ​a _ b ​​(​b _ c ​)​ = ​ab _ bc ​ = ​a _ c ​​

•	 Reciprocal or Inverse
The number that times it equals 1. Flip the numerator and denominator 
to find.
Examples:	The reciprocal of ​​2 _ 3​​ is ​​3 _ 2​ ​.

The reciprocal of 4 is ​​1 _ 4​​.
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4.1 Solving for Unknowns 
While algebra can be defined as simply using letters to “represent numbers 
and quantities,”1 another definition for algebra encompasses the reason we 
use those letters: “the science which teaches how to determine unknown 
quantities by means of those that are known.”2

You see, because of how unerringly consistent God created and sustains all 
things, we can work with unknown quantities (represented with letters and 
symbols) with confidence, knowing that whatever quantities those letters 
and symbols represent, they will operate according to the “fixed order” God 
established. And we can use this knowledge to find missing information in 
real-life problems.

At the core of finding missing information is the concept of equality. If we 
know things are equal, we can use that knowledge to find missing 
information. You should already be very familiar with the basics of solving 
for unknowns, but let’s briefly review and then explore how to handle 
equations requiring a few extra steps. 

Using Equality to Find Unknowns
An equal sign means that two expressions are equal. Now if they’re equal, it 
makes sense that if we add or subtract the same quantity to both sides of an 
equation, the equation will stay in balance. 

Added 2 to both sides. Subtracted 2 from both sides.
	 4 + 2	 =	 4 + 2 	 4 – 2	 =	 4 – 2

Chapter

Solving for Unknowns and 
Problem-Solving Skills4

“Thus says the Lord: If 
I have not established 
my covenant with day 
and night and the fixed 
order of heaven and 
earth, then I will reject 
the offspring of Jacob 
and David my servant 
and will not choose one 
of his offspring to rule 
over the offspring of 
Abraham, Isaac, and 
Jacob. For I will restore 
their fortunes and will 
have mercy on them.” 
(Jeremiah 33:25–26; 
ESV)
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Likewise, we can multiply or divide both sides of an equation by the same 
quantity and the sides again stay equal.

Multiplied both sides by 2. Divided both sides by 2.
	 4 ​•​ 2	 =	 4 ​•​ 2 	 4 ÷ 2	 =	 4 ÷ 2

We can also square both sides of the equation . . . or find the square root of 
both sides.

Squared both sides. Took the square root of both sides.
	 ​​4​​ 2​	 =	 ​4​​ 2​​ 	 ​​√ 

_
 4 ​	 =	  ​√ 

_
 4 ​​

We can perform the same operation using the same amount to both sides of an 
equation without changing the value. 

We can use this knowledge to isolate an unknown on a side by itself, thus finding 
what it equals. 

Example: Solve ​5𝑥 = 10​ for ​𝑥.​

Now, you can probably tell right away that the answer should 
be 2, since 5 times 2 equals 10. But let’s review how to find that 
systematically for problems that are less obvious.

We know what 5 times ​𝑥​ equals. So, we need to divide (the opposite 
operation of multiplication) both sides by 5 to find ​𝑥​.

​​5𝑥 _ 5 ​ = ​10 _ 5 ​​

Notice that we divided both sides by the same amount, so the equation 
is still in balance. Now let’s complete the division!

​𝑥 = 2​ 

Remember back from Lesson 1.2 that division can be completed by 
inverting and multiplying — that is, by multiplying by the reciprocal. 
Notice that we could have multiplied both sides of the equation by the 

reciprocal of 5 — that is, ​​1 _ 5​​ — to reach the same answer.

Remember, the fraction 
line means division.
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​​(​1 _ 5​)​5𝑥 = 10​(​1 _ 5​)​​

​​1 _ 5​​(5𝑥)​ = 
2
10​(​1 _ 5​)​​ 

​𝑥 = 2​ 

You can check to see if you solved a problem correctly by plugging the 
answer you got back into the original equation and seeing if it holds 
true. For example, for ​5𝑥 = 10​, we got an answer of ​𝑥 = 2​. Let’s plug 2 
in for ​𝑥​ in the original equation and see if it holds true:

	​ 5𝑥 = 10​	 (original equation)

	​ 5​(2)​ = 10​	 (plugged in 2)

	​ 10 = 10​	 (simplified)

Notice that we ended up with equal amounts on both sides of the equal 
sign. We’ve now verified that we found the correct value for ​𝑥​.

To check if you found the correct value for an unknown, plug the value you found 
back into the original equation for the unknown and simplify. If you end up with 
equal amounts on both sides of the equal sign, you know you found the correct 
value; if not, try again!

While the correct value might seem obvious in ​5𝑥 = 10​, knowing how to 
check your work becomes very important as problems get more complicated. 
It can help you avoid a lot of errors! And if you were to apply math outside 
of a textbook and really needed to make sure you had the correct answer in a 
situation where there wasn’t a solution manual, knowing how to check your 
work comes in really handy! For example, if you were ordering tile and had 
figured out how much tile you needed, an error could mean you pay for more 
tile than you really need . . . or could mean you don’t have enough to finish 
the project. Checking your work can sometimes save money and time!

Problems Requiring More Than One Step
Sometimes, problems will require more than one step in order to solve. Don’t 
be surprised if it takes more than one step to isolate the unknown on a side by 
itself! Just keep working step-by-step until you have the unknown by itself.

Example: Solve ​5 = ​30 __ 𝑥 ​​ for ​𝑥​.

Notice that in this problem, we have ​𝑥​ in the denominator. What do we 
do? Well, let’s start by getting it into the numerator. We can do that by 
multiplying both sides by ​𝑥​. 

	​ 5𝒙 = ​30 __ 𝑥 ​ 𝒙​

	​ 5𝑥 = ​30 __ 𝑥 ​ 𝑥​

	​ 5𝑥 = 30​ 

We reach the same 
answer either way, 
but multiplying by the 
reciprocal is usually the 
easier way of dividing 
both sides, especially 
when fractions are 
involved.
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Note that because of the consistent way God governs all things, it doesn’t matter if we know the quantity that 
we are working with. So long as we know that we’re using the same quantity and same operation on both sides, 
we know that the equation will stay in balance.

Added 𝒙 to both sides. Subtracted 𝒙 from both sides.
	 4 + 𝑥	 =	 4 + 𝑥 	 4 – 𝑥	 =	 4 – 𝑥

Now we can divide both sides by 5 or multiply them both by ​​​1 _ 5​​​ to find ​𝑥​. 

	​​ 5𝑥 __ 5 ​ ​	 or  ​5𝑥​(​1 _ 5​)​​

	​​ 5𝑥 __ 5 ​ = ​30 __ 5 ​​	or  ​5𝑥​(​1 _ 5​)​ = 30​(​1 _ 5​)​​

	​ 𝒙 = 6​

Example: Solve ​80 = –𝑥 + 3​ for ​𝑥​.

We’ll start by subtracting 3 from both sides.

	​ 80 – 3 = –𝑥 + 3 – 3​

	​ 77 = –𝒙​ 

Now we’ve found the opposite of ​𝑥​, but we want to find ​𝑥​! So we have to 
multiply both sides by –1.

	​​ 77​(–1)​ = –𝑥​(​​–1​)​​​​

	​ –77 = 𝒙​ 

	​ 𝑥 = − 77​	� (swapped sides of the equation to get 
the unknown on the left, as that is 
easier to read)

Note that equal means equal. ​− 77 = 𝑥​ and ​𝑥 = − 77​ mean the same thing. Only we 
typically put the unknown on the left to make it easier to read.

Remember from Lesson 
1.6 that we can think of 
–​𝑥​ as ​​(–1)​​​​(𝑥)​​. So  
–​𝑥​​​(–1)​​ would equal  

​​(–1)​​​​(𝑥)​​​​(–1)​​, which  
would leave us with 
positive ​𝑥​.
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Dealing with Unknowns
Sometimes, we want to rewrite equations so as to express the relationship in 
a different way. For example, if you know that ​P = VI​ and you needed to find 
the voltage (​V​) when you know the power (​P​) and current (​I​) for a bunch of 
different devices, you would want to first solve the equation for voltage so it 
would be easier to plug in all the values. And you can do this because of the 
consistent way God governs all things! It doesn’t matter that we don’t know 
the exact quantities we’re dealing with; we know that if we perform the same 
operation using the same quantity to both sides of an equation, that equation 
will stay in balance.

	​ P = VI​ 

	​​ P _ I ​ = ​VI __ I ​ ​	 (divided both sides by ​I​)

	​​ P _ I ​ = V​	 (simplified)

	​ V = ​P _ I ​​	 (swapped sides for clarity)

It’s important to note that in dividing both sides of an equation by an unknown, 
we’re assuming the unknown is not 0. After all, we can’t divide by 0. In this case, 
I can't equal 0.

Applying the Skill
Let’s look at some examples of actually solving for real-life unknowns.

Example: If we know that we need to travel 40 miles and that the speed limit 
on the road is 35 miles per hour, how long will it take us? 

Distance equals speed times time. Here we want to figure out the time.

	​​ distance = speed​(time)​​​

	​ d = st​

While you might be tempted to now plug in the information we’ve 
been given and simplify, there’s an easier way. 

When solving real-life problems, you’ll save yourself some time if you first 
rearrange the equation so the unknown you’re trying to find is on a side by itself 
and then plug in all the known values. That way, you’re not having to keep track of 
all the numbers and units while you rearrange the equation.

So before we plug in the information we’ve been given, let’s solve this 
problem so that ​t​, the value we’re trying to find, is on a side by itself.

	​​ d _ s ​ = t​	 (divided both sides by s)
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And now we can plug in the values we’ve been given and solve.

	​​ 
40mi

 ______ 
​35 mi ____ hr ​

 ​ = t ​  	 (substituted values given)

	​40 mi​(​  hr ____ 35 mi​)​ = t​  	� (inverted and multiplied to complete 

the  division — see Lesson 1.4)

	​ 1.143 hr ≈ t​	 (simplified)

	​ t ≈ 1.143 hr​	 (swapped sides of the equation)

We can swap the entire sides of an equation without changing the meaning, as we 
did in the last step above. After all, equal means equal. Note that we used the 
approximately equal sign at the end to signify that we used a rounded value.

Keeping Perspective
Because of the consistent way God governs all things, if we perform the same 
operation using the same quantity to both sides of an equation, that equation 
will stay in balance. We can use this knowledge to help us solve real-life 
problems.

Take careful note to what we’re really doing: we’re observing consistencies of 
God’s creation and using those to help us complete the tasks He’s given us to 
do. Algebra would be completely pointless were it not for Jesus’ faithfulness 
in “upholding all things by the word of His power. . . .” (Hebrews 1:3). 
Remember to praise the Creator today as you practice solving for unknowns.
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4.2 Solving for Unknowns Using Roots 
In the last chapter, we looked at roots. Now let’s connect that with what we 
looked at in the last lesson regarding solving for unknowns. 

Example: Solve ​​2𝑥​​ 2​ = 98​ for ​𝑥​.

Yikes! What do we do? We’ve got ​​𝑥​​ 2​​, but we need to find ​𝑥​.

No worries — remember, a squared number means that number 
multiplied by itself. So, if we can find the value of ​𝑥​ multiplied by 
itself, or ​​𝑥​​ 2​​, then we can take the square root of both sides to find the 
value of just ​𝑥​.

We’ll start by dividing both sides of the equation by 2.

	​ ​​2𝑥​​ 2​ _ 2  ​ = ​98 _ 2 ​​

	​ ​𝑥​​ 2​ = 49​

Now let’s take the square root of both sides to find x.

	​ ± ​√ 
_

 ​𝑥​​ 2​ ​ = ± ​√ 
_

 49 ​​

	​ ± 𝑥 = ± 7​ 

Notice that we put the symbol ​±​ (called the plus or minus sign) in 
front of the square root symbols. After all, a square root can be either 
positive or negative (for example, both –7​​(–7)​​ and 7​​(7)​​ equal 49). While we 
define ​​√ 

_
 ​ ​​ and fractional exponents as meaning the positive root for even roots 

(i.e., roots where there are 2 possibilities), when writing those signs ourselves 
to find an unknown, we can’t make that assumption! 

However, when taking the square root of both sides like this, it’s only 
necessary to list the ​±​ on one side. So our answer is as follows:

	​ 𝑥 = ± 7​

Why? Well, let’s make a list of all of the possibilities we could get from ​
± 𝑥 = ± 7​. ​𝑥​ could be positive while 7 is positive, or positive while 7 is negative. 
Or ​𝑥​ could be negative while 7 is either positive or negative.

Now let’s solve the last 2 equations for ​𝑥​ by multiplying both sides by –1.

	​ − 𝑥 = 7​

	​ 𝑥 = − 7​	 (multiplied both sides by –1)

	​ − 𝑥 = − 7​

	​ 𝑥 = 7 ​	 (multiplied both sides by –1)

When taking an even root of both sides of an equation, put a ​±​ sign in front of 
one side of the equation. 

In this problem, 𝑥 
could be standing for 
the time it takes a 
ball to drop 240.1 m if 
the only force on it is 
gravity. 

​𝑥 = 7
𝑥 = − 7  
− 𝑥 = 7  
− 𝑥 = − 7​

Notice that both 
of these values (–7 
and 7) were already 
accounted for by the ​±​ 
sign in front of 7 — 
basically, ​𝑥​ can either 
be ​±​ 7. Thus, it’s not 
necessary to list the ​±​ 
sign in front of the ​𝑥​ 
side.
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Note that rather than thinking of taking the square root of both sides in 
the example we just worked through, we could also have thought about the 

operation in terms of raising both sides to the ​​1 _ 2​​. Again, though, since we’re 
using this to find an unknown and not just solving a fractional exponent 
already written down, we have to account for the fact that the answer could 
be positive or negative. We’ll do that by putting a ​±​ sign in front of one 
side of the equation. Here is the same problem we just solved, done using 
fractional exponents instead.

	​ ​2𝑥​​ 2​ = 98​

	​ ​​2𝑥​​ 2​ _ 2  ​ = ​98 _ 2 ​​	 (divided both sides by 2)

	​ ​𝑥​​ 2​ = 49​	 (simplified)

	​​ ​(​𝑥​​ 2​)​​​ ​
1 _ 2​​ = ​± ​(49)​​​ ​

1 _ 2​​​	 (raised both sides to the ​​1 _ 2​​ )

	​​ 𝑥​​ ​
2​(1)​

 ____ 2 ​ ​ = ± 7​

	​ ​𝑥​​ 1​ = ± 7​

	​ 𝑥 = ± 7​	 (simplified)

Remember, we can perform the same operation using the same quantity to 
both sides without changing the value. To solve a problem, just figure out 
what operation will separate the unknown by itself!

Other Roots
While we emphasize square roots because they are the more common “tool,” 
the same principle applies with other roots! You can take the cubed root, 
fourth root, etc., of both sides as well. Just remember, even roots can be either 
positive or negative, while odd roots of positive numbers will be positive.

 Example: Solve ​​𝑥​​ 3​ = 40​ for ​𝑥​.

	​​ ​(​𝑥​​ 3​)​​​ ​
1 _ 3​​ = ​40​​ ​

1 _ 3​​​	� (taking the cubed root of both sides, 
using the fractional exponent notation)

	​ 𝑥 ≈ 3.420​

Notice that we did not put a ​±​ sign, as a cubed root is an odd root. (The 3 in the 
denominator tells us the root — and 3 is an odd number; it cannot be evenly divided 
by 2.)

Note that we’ll learn 
other methods to 
solve problems where 
𝑥 is raised to powers 
greater than 2, as 
sometimes you can miss 
answers by taking the 
root of both sides. For 
example, in ​​16𝑥 = 4𝑥​​ 3​​, 
if you divide both sides 
by 4𝑥, you're assuming 
𝑥 doesn't equal 0...
but 𝑥 = 0 is a valid 
solution! 
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Units and Square Roots
If a problem has units of measure, remember that you can take the square 
root of units of measure just like you would of unknowns, remembering 
to view the entire unit as a single entity.

Example: Solve ​50 m​i​​ 2​ = 2​𝑥​​ 2​​ for ​𝑥​.

	​​ 50 m​i​​ 2​ _____ 2  ​ = ​2​𝑥​​ 2​ ___ 2  ​​	 (divided both sides by 2)

	​ 25 m​i​​ 2​ = ​𝑥​​ 2​​	 (simplified)

	​ ± ​√ 
_

 25 m​i​​ 2​ ​ = ​√ 
_

 ​𝑥​​ 2​ ​​	 (took the square root of both sides)

	​ ± 5 mi = 𝑥​	 (simplified)

Notice that ​​√ 
_

 m​i​​ 2​ ​​ was mi, just like ​​√ 
_

 ​𝑥​​ 2​ ​​ was just ​𝑥​.

Applying the Skill
This application example is much more involved, so be patient with yourself 
in reading it through. (You may even want to work it out yourself.) It’s 
designed to help you understand how to solve real-life problems. When taken 
step-by-step, you have all of the skills you need!

Example: The consistent way God causes the force of gravity to operate 
between two objects can be expressed like this: ​F = G ​

​m​ 1​​ ​m​ 2​​ ____ ​r​​ 2​  ​.​ Let’s say we  
know that ​​m​ 1​​​ is 500 kg and ​​m​ 2​​​ is 5,000 kg. ​G​ is known to have a value of  

​​(6.67 × ​10​​ −11​)​​​​(​  ​m​​ 3​ _____ kg • ​s​​ 2​​)​​ and we measure the force (​F​) to be 100,000 N. How 

would we find what the distance between the center of the masses (​r​) is?

Once again, rather than instantly substituting the values, we’re going 
to solve for the unknown we’re trying to find first.

	​ F = G ​
​m​ 1​​ ​m​ 2​​ ____ ​r​​ 2​  ​​	 (original equation)

	​ F ​r​​ 2​ = G ​m​ 1​​ ​m​ 2​​​	 (multiplied both sides by ​​​r​​ 2​​)​​​​

	​ ​r​​ 2​ = ​
G ​m​ 1​​ ​m​ 2​​ ______ F  ​​	 (divided both sides by F)

	​ r = ± ​√ 

______
 ​

G ​m​ 1​​ ​m​ 2​​ ______ F ​  ​​	 (took the square root of both sides)

Now, since we know that ​r​ is representing the distance between these 
objects and that those distances would be positive, we can omit the ​±​ 
sign and just look for the positive root, giving us this:

	​ r =  ​√ 

______
 ​

G ​m​ 1​​ ​m​ 2​​ ______ F ​ ​ ​
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Notice that we solved the equation for the unknown we needed to find. Now we can 
simply plug in the values we know and solve for that unknown!

​r = ​√ 

____________________________________
    ​ 

​(​​6.67 × ​10​​ −11​​)​​​(​​ ​  ​m​​ 3​ _____ kg • ​s​​ 2​​​)​​500 kg​(​​5,000 kg​)​​
    ___________________________________   

100,000 N
 ​ ​​

(substituted values given)

​r = ​√ 

_______________________________
   ​ 

​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​  ​m​​ 3​ _____ kg • ​s​​ 2​​​)​​​(​​kg​)​​​(​​kg​)​​
   _______________________________  

N
 ​ ​​

(used a calculator to complete all the 
multiplication and division of the 
numbers)

​r = ​√ 

________________________
   ​ 

​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​​m​​ 3​ • kg ______ ​s​​ 2​ ​ ​)​​
   ________________________  

 N
 ​ ​​

(simplified the units in the 
numerator to a single fraction)

​r = ​√ 

_______________________
   ​ 

​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​​m​​ 3​ • kg ______ ​s​​ 2​ ​ ​)​​
   _______________________  

​kg • m _____ ​s​​ 2​ ​
 ​ ​ ​

(replaced N in the denominator with ​
kg • ​m __ ​s​​ 2​ ​​ — see Lesson 2.5)

​r = ​√ 

_____________________________
    ​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​​m​​ 3​ • kg ______ ​s​​ 2​ ​ ​)​​​(​​ ​  ​s​​ 2​ _____ kg • m​​)​​ ​​

(completed the division by inverting 
and multiplying the denominator)

​r = ​√ 

_______________________________
    ​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​​m​​ 3​ ​m​​ 2​ • kg ________ ​s​​ 2​ ​ ​)​​​(​​ ​  ​s​​ 2​ _____ kg • m​​)​​ ​​ �(simplified the units)

​r = ​√ 
________________

  ​(1.6675 × ​10​​ −9​)​​m​​ 2​ ​ ≈ 4.084 × ​10​​ −5​ m​
(used a calculator to find the square 
root)

The distance here is really small, so these two objects have a lot of their mass 
compacted into a small area. This might be true for what are known as black 
holes, which are found out in the farthest reaches of space and are so dense 
that any light that goes into them is not reflected back but just gets added to 
the mass of the black hole.3

Always sanity check your answers to real-life problems by seeing if your answer 
and units of measure make sense. If you plug the numbers into the calculator 
incorrectly on the above, you might end up with a number like 4,083,503.398 m. 
This doesn’t make any sense, since we were taking the square root of a much 
smaller number (if we rewrite ​1.6675 × ​10​​ −9​​ so it’s not in scientific notation, we’d 
get 0.0000000016675). 

Also, if we ended up with a unit of measure that is not a distance unit of measure, 
we’d also know that we did something wrong. After all, r represents the distance 
between the center of the two masses, so it will be a unit of distance if we solved 
the problem correctly.
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Keeping Perspective
Roots are yet another “tool” in your mathematical toolbox you can use to help 
you figure out unknown information from the information you know. We’re 
able to find unknown information because of the consistent way God holds all 
things together.

Remember as you solve your problems that although the ​​√ 
_
 ​ ​​ and fractional 

exponent notation is defined to mean the positive root for even roots, when 
we take a square root ourselves, we can’t assume the positive root is the only 
answer we care about. When taking the square root of both sides of an 
equation, be sure to list both the positive and negative answer, unless 
only one makes sense in the application.

The blue dots in this 
field of galaxies, known 
as the COSMOS field, 
show galaxies that 
contain supermassive 
black holes emitting 
high-energy X-rays.
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4.3 Exploring Inequalities
There are circumstances where we don’t need a specific answer; instead, we 
need a range of answers. 

For example, if you’re trying to live within a budget, you could spend any 
amount less than or equal to a specific amount. 

Or if you need at least a 60 to pass a course, any score greater than or equal to 
a 60 would work. 

Or consider a refrigerator. There is energy put into it. Some of that energy goes 
toward the work of cooling, but some is lost in heat due to inefficiency. The 
work of cooling is less than or equal to the energy put in.

We use inequalities to help us when working with situations with a range 
of answers. Hopefully, the idea of an inequality is already quite familiar. But 
we’re going to review and look at them in a bit more depth today.

Inequality Symbols
The chart shows some comparison symbols you should know. Keep in mind 
that these are just agreed-upon symbols to represent the relationship between 
two expressions — the symbols we use can vary (and have historically).

Symbol Name Symbol Name
> greater than < less than
≥ greater than or equal to ≤ less than or equal to
= equal to ≠ does not equal

5  <  8
smaller side larger side

lesser value greater value

A visual way of thinking about inequalities is to use a number line. If a 
number is farther to the right on a number line than another number, we say 
it is greater than that number. If it is farther to the left, it is less than.

4 is farther to the right than 1, or is greater than 1 
4 > 1

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

–1 is farther to the left than 1, or is less than 1 
–1 < 1

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

Just remember that 
the larger side of the 
inequality goes with 
the greater value. 
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Inequalities and Ranges of Values
We can use inequalities to help us specify the ranges of values an unknown 
can be. For example, if we know the amount we can spend on groceries for 
the week must be less than $100, we could represent the amount our groceries 
could be like this:

​g ≤ $100​

Or if our score must be greater than 60 to pass a test, we could express the 
ranges of all scores that would give us a passing grade like this:

​s ≥ 60​

Solving Inequalities
There are times when we have two expressions separated by an inequality. For 
instance, if the number of hours we work must be greater than or equal to 22 
hours to get health insurance and we’re working 8 hours every Monday, how 
many more hours ​​(t)​​ do we need to work? We’d have this:

​22 hr ≤ 8 hr + t​

Just as we did with equalities, we can add, subtract, multiply, or divide the 
same amount to both sides of an inequality without changing the meaning of the 
inequality. 

Original Inequality
	 6 	 >	 4 

Added 2 to both sides. Subtracted 2 from both sides.
	 6 + 2	 >	 4 + 2 	 6 – 2	 >	 4 – 2
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Multiplied both sides by 2. Divided both sides by 2.
	 6 ​•​ 2	 >	 4 ​•​ 2 	 6 ÷ 2	 >	 4 ÷ 2

There is one important exception to this with inequalities. With inequalities, when 
we multiply or divide by a negative number, we have to flip the direction of the 
inequality sign for the inequality to hold true. 

After all, when you think about it, we’re initially saying that a certain number 
is further to one side or the other on the number line. When we multiply or 
divide it by a negative number, however, the negative part takes the opposite of 
the number — so the relationship on the number line ends up flipping. Thus, 
we have to flip the sign as well. 

For example, let’s say we have the inequality ​3 > 1​. 

3 is farther to the right than 1. 
3 > 1

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

If we multiply both sides by a negative number, we end up reversing this 
relationship. For example, let’s pick –2. When we do, we get –6 on the left side 
and –2 on the right.

​​​(− 2)​3 > 1​(​​ − 2​)​​​​
​​− 6 > − 2​​

Multiplied both sides by –2.

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7

Notice that –6 is farther to the left than –2. So it is not true that –6 > –2. 
Instead, we have to flip the sign.

–6 is farther to the left than –2. 
–6 < –2

	 –7	 –6	 –5	 –4	 –3	 –2	 –1	 0	 1	 2	 3	 4	 5	 6	 7
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In order to preserve the correct relationship between the sides of an inequality, 
when you multiply or divide both sides by a negative number (thus taking the 
opposite of each side), you also have to flip the inequality sign, as which side is 
greater is now opposite of what it was.

Finding Unknowns in Inequalities
We can use the knowledge that we can add, subtract, multiply, or divide any 
number to both sides of an inequality (being careful to swap the direction of 
the sign if multiplying or dividing by a negative number) to find unknowns.

Example: Solve ​22 hr ≤ 8 hr + t​ for ​t​.

	​ 14 hr ≤ t​			   (subtracted 8 hr from both sides)

	​ t ≥ 14 hr​		  (swapped sides — see box)

Notice that when we moved ​t​ to the left above we made sure to preserve the 
meaning by keeping ​t​ with the greater side of the inequality. Be careful when 
switching what’s on each side of the inequality that you also adjust the 
inequality symbol so that the larger side remains with the greater side.

​14 hr ≤ t = t ≥ 14 hr​	 (both inequalities have the same meaning)

​14 hr ≤ t ≠ t ≤ 14 hr​	 (the inequalities have different meanings)

Example: Solve ​8𝑥 > 1​ for ​𝑥​.

	​​ 8𝑥 __ 8 ​ > ​1 _ 8​​	 (divided both sides by 8)

	​ 𝑥 > ​1 _ 8​ ​	

Example: Solve ​− 8𝑥 > 1​ for ​𝑥​.

	​​ − 8𝑥 ____ − 8 ​ < ​  1 ___ − 8​​	� (divided both sides by –8 and changed 
the direction of the sign)

	​ 𝑥 < − ​1 _ 8​  ​ 	

Remember that the direction of the sign changes when multiplying or dividing an 
inequality by a negative number.

Checking Your Work
As with equalities, you can check your work by plugging the answer you got 
for the unknown back into the original problem. Only with inequalities, you’ll 
have to think through the > and < signs to see if the problem is correct.
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Example: Check if the answer we got of ​𝑥 < −  ​1 _ 8​​ is the correct answer for ​
− 8𝑥 > 1​.

Checking inequalities requires more steps, since ​𝑥​ could be multiple 
values. A good place to start is to rewrite the original inequality as an 
equality and see if the value found would make the equation equal. If 
it does, that tells us that’s the correct value for ​𝑥​ to be either greater or 
less than.

	​ − 8𝑥 = 1​	 (rewrote with an equal sign)

	​ − 8​(−  ​1 _ 8​)​ = 1​	 (plugged ​−  ​1 _ 8​​ in for ​𝑥​)​​​

	​ 1 = 1​	 (simplified)

Since we have 1 on both sides, we know that this value is the point at 
which the inequality would be equal if it were an equality. So we know 
that ​− ​1 _ 8​​ is the point at which numbers would have to be less than or 
greater than in order to make the expression an inequality. We just 
have to make sure we found the correct sign.

To check if < was the correct sign, we need to plug in any value less 

than ​− ​1 _ 8​​. So let’s plug in ​− 1 ​(the closest whole number less than the  

​− ​1 _ 8​​ value). 

	​ − 8​(− 1)​ > 1​

	​ 8 > 1​

This is a true statement, so we have now verified that ​𝑥 < − ​1 _ 8​​ does 
indeed satisfied the inequality. Note we could also plug in a number 

greater than ​− ​1 _ 8​​ to show that it does not work. We could plug in 0 (the 
closest whole number on the other side) and see

	​ − 8​(0)​ > 1​

	​ 0 > 1​

which is not true. Thus, we reconfirmed that the inequality solution is 
indeed the correct one.

Multiplying and Dividing Both Sides of an Inequality by 
Unknowns
What do we do when we’re multiplying or dividing both sides of an inequality 
by an unknown? After all, we don’t know if the unknown is a positive or a 
negative number! In this case, we have to solve assuming it is positive and 
assuming it is negative and then analyze the problem graphically. It’s a skill 
that’s beyond the scope of this course, so we won’t be going over it. Just know 
that you can’t simply multiply or divide both sides of an inequality 

We chose whole 
numbers to keep the 
math easy and avoid 

mistakes. But if ​− ​1 _ 8​​ is 
the correct answer, any 

number less than ​− ​1 _ 8​​ 
should have resulted in 
a true inequality, and 
any number greater 

than ​− ​1 _ 8​​ should have 

resulted in a false one.  

– ​​3 _ 4​​ – ​​1 _ 2​​ – ​​1 _ 4​​– ​​1 _ 8​​–1

​𝑥​ < – ​​1 _ 8​​

0
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by an unknown without taking into account that it could be either 
positive or negative.

Keeping Perspective
Inequalities are yet another tool to have in your mathematical toolbox. 
They give us a way of showing that something has to be greater or less than 
something else. 

One interesting area of study where inequalities come up a lot is in 
thermodynamics (the study of how heat and energy are transferred). There’s 
always an increase in what we call entropy (represented by the letter ​S​), 
which is a measure of the order and disorder of the universe. The overall final 
entropy of the universe is greater than or equal to the initial entropy for all 
exchanges of heat and energy — while entropy can decrease in a local system, 
it never globally decreases.4 This basically means that the universe as a whole 
is growing in its disorder.

​overall final entropy ≥ overall initial entropy​
or

​​S​ Final​​ ≥ ​S​ Initial​​​

Thermodynamics is a rather in-depth topic with a lot of different aspects to 
it. How exactly (or if) it operated in the original perfect world is something 
creationists still debate.5 It’s hard for us as fallen creatures to imagine what a 
perfect world was like. We believe it’s safe to say, though, that the tendency for 
things to move towards disorder we observe today points to the fact that we 
live in a fallen world, just as the Bible says. 

Random Facts from Dr. Adam
The tendency toward disorder (i.e., the Second Law of Thermodynamics) is one 
that often comes up when debating creation and evolution. It’s too in-depth to 
cover the arguments here, but the general gist is that this law appears problematic 
for evolutionists (although they would try to argue otherwise). At the same time, 
creationists often misrepresent it in their arguments, oversimplifying it. For 
more details, see “Does the Second Law of Thermodynamics Favor Evolution?” 
by Dr. Danny Faulkner at https://answersingenesis.org/physics/second-law-of-
thermodynamics/. 

	 Lesson 4.3  [123]



4.4 Application Problem-Solving Skills
It’s important that you know how to apply the various concepts that you’re 
learning. After all, God has given each one of us work to do here on earth. 
In fact, work was part of the Garden of Eden before the Fall (i.e., in Genesis 
2:9, Adam did work in naming all the animals; in Genesis 2:15, he did work 
in tending the garden)! While the Fall affected everything and made work no 
longer perfect like God created it, it’s still a God-given blessing. And math can 
aid in that work!

Up until now, application problems have either consisted of plugging 
numbers into a formula and solving or only required thinking through a few 
steps. But in real life, problems don’t come labeled with what formula to use  
. . . and they often require more steps to solve. 

While being able to apply algebra without some clues as to what formula to 
use often requires knowledge of physics or financial concepts, you can learn 
to apply algebra on your own in various settings using basic geometric or 
everyday concepts you know. And by learning how to think through those 
problems, you’ll be preparing yourself for solving other types of real-life 
problems too.

Let’s look at some pointers to help.

Pointer #1: Don’t Panic!
Sometimes, the sight of an unfamiliar problem may be a bit overwhelming. 
But don’t panic. Break it down and see if you can use what you know to 
help you solve what you don’t.

Pointer #2: Think Before You Start Solving.
Before you begin trying to find the answer, take the time to think 
through what you know and what you need to know. Look for how the 
information you’ve been given fits together. 

•	 Start by simply writing out the information you know and the 
information you need to find. 

•	 Then think through how you can find the information you need to find 
— it may take more than one step. Here’s where you need to look at the 
information you know and see how it relates to the information you need 
to find. It’s often helpful to use words or symbols to write out equations 
showing how the information you know relates to the information you’re 
trying to find. 

One very easy mistake in solving problems is attempting to jump right into 
solving the math. But if you haven’t properly understood the problem, you 
could be doing the wrong math! It’s critical that you think through 
a problem and make sure that you know what information you’ve been 
given, what you need to find, and how to go about finding it before you start 
performing math operations. 

Principles and Methods 
of Teaching Arithmetic10 
gives 4 helpful steps to 
problem solving: 

1.	 Getting a clear 
understanding of the 
conditions of the 
problem

2.	 Planning the 
solution

3.	 Executing the plan

4.	 Checking the result 
obtained

Notice that steps 1 
and 2 require thinking 
before you start solving 
the problem (i.e., 
executing the plan!)  
. . . and that checking 
your work (see Pointer 
#3) is a step! 
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Pointer #3: See If Your Answer Makes Sense.
Does the answer make sense? The simple habit of thinking through if the 
answer you got makes sense can help catch many errors.

Pointer #4: Don’t Round Until the End — and Know 
How to Use Your Calculator.
Sometimes you’ll need to perform a lot of calculations before you finish a 
problem. If you round each time, your ending answer could end up way off. 
Instead, use the parentheses buttons on your calculator to group numbers 

and avoid rounding. For example, if solving ​​​(1 +  ​1 _ 6​)​​​ 
2

​​, either enter 1 ​÷​ 6 first 

and then add 1, or enter 1 and then put parentheses around 1 ​÷​ 6 to tell the 
calculator to treat that as a separate term being added to the 1. Then square 
the result. Take a minute to also familiarize yourself with your calculator. 
Does it have the ability to store an answer in its memory? If so, that can also 
help you avoid rounding, as it can store the answer for one part of a problem 
to easily recall back later. As an example, on the TI-83 and TI-84 Plus, there is 
the “​STO →​” button. To store a value, type in the value or expression, then the 
“​STO →​” button, then the “ALPHA” button, then any button with the letter 
you want to use to store that value or expression, and then “enter.” When you 
press the “ALPHA” button and that letter again, it will recall whatever you 
stored there. 

Walking Through an Example
Okay, let’s walk through an example problem and see these problem-solving 
pointers in action.

Circle Math
The example problem below, like many real-life problems you’ll encounter, requires 
remembering various relationships you should have already learned about. In this 
case, it’s going to use information we know about the relationships between the 
parts of a circle. Note that you can find a list of common geometric formulas in 
Appendix B: Reference Section.

d

r

​Circumference = πd = 2πr​

​d = 2r​

If you don’t know how 
to use the memory 
function on your 
calculator, look online 
for “memory + YOUR 
CALCULATOR MAKE AND 
MODEL.” 
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Example: If a circus ring is 42 ft in diameter and a horse makes 12 strides 
each time it goes around it and goes around the ring 3 times, how far does the 
horse go in each stride? Assume that the path of the horse is 6 inches inside 
the rim.6

What do we know? What do we need to try to find? Below is the 
information we’ve been told.

​Diamete​r​ ring​​ = 42 ft ​		

​Strides = 12​				  

​Pat​h​ horse​​ = 6 in inside rim​	

​Number of times around ring = 3​

​distance of each stride = ?​		

Note that we could have saved our fingers some writing by using letters rather than 
words to stand for the distance, strides, etc. The exact letters don’t matter — they 
are just placeholders. Here we used subscripts to help us represent which distance, 
time, rate, etc., were meant. (The subscript r in dr reminds us that is for the 
diameter of the ring and ​d​ in ​​S​ d​​​ reminds us it is for the distance of a stride.)

​​d​ r​​ = 42 ft​	 ​​P​ h​​ = 6​ in inside rim	 ​​S​ d​​ = ?​
​S = 12​	 ​N = 3​

Now let’s plan how to figure out the distance in each stride from this 
information. If we can figure out the total distance the horse travels in 
one trip around the ring, we can figure out the distance it travels in a 
stride by dividing that distance by 12 (the number of strides the horse 
took to go that distance).

Notice that we’re assuming the strides are all the same length — or that we’re 
finding an average stride. To solve real-life problems, we sometimes have to make 
assumptions like this.

How far did the horse travel in one trip around the ring using those 12 
strides? Well, we can use the relationships of a circle that we already 
know to find that! 

​​Circumference of circle horse traveled = π​(​​diameter of circle horse traveled​)​​​​

​​S​ d​​ = distance of each stride = ​Circumference of circle horse traveled   __________________________   number of strides ​​

Now we just need to find the diameter of the circle the horse made. A 
very easy mistake would be to use 42 ft. But notice that the problem 
says that the path of the horse is 6 inches inside the rim. Another easy 
mistake to make here would be to use a diameter of 42 ft minus 6 in. 
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However, taking the time to draw the problem  
out will help us avoid this error.

42 ft

6 in 6 in

path of horse

ring

Take the time to draw out problems involving shapes. It will help you avoid errors.

Notice that if the horse is taking a path 6 inches in from the outside 
of the ring, the diameter of the circle it is traveling will be 6 inches 
smaller on both sides.

​Diameter of circle horse traveled = 42 ft – 6 in – 6 in​

Now, another easy mistake to make here would be to simply subtract 
42 – 6 – 6. But notice that the 42 is in feet while the 6 is in inches. 

We can’t add unlike units together. We have to first make the units the same.

​Diameter of circle horse traveled = 42 ft – 0.5 ft – 0.5 ft = 41 ft​

The diameter we care about — the one that can help us find the path 
the horse is traveling — is 41 feet.

Now we can do the math to find the length of each stride. 

​​Circumference of circle horse traveled = π​(​​diameter of circle horse traveled​)​​​​

​​Circumference of circle horse traveled = π​(​​41 ft​)​​ ​​

​​S​ d​​ = distance of each stride = ​Circumference of circle horse traveled   __________________________   number of strides ​​

​​S​ d​​ = distance of each stride = ​π​(41 ft)​ _ 12  ​ ≈ 10.734 ft​

Now there’s one more step: checking to see if our answer makes sense. 
Does it make sense that a horse can travel 10.734 ft with each stride? 
Considering how big a horse is, that’s probably a reasonable amount. If 
we had our horse moving forward only 2 ft or as much as 30 ft, though, 
we might want to recheck our math.

Also, does it make sense that going 10.734 ft for 12 strides would cover ​
π​(41 ft)​​, or 128.74 ft? Yes, if we round to the nearest whole number, 
we’d have 11 ft and 12 strides . . . which we can mentally calculate 
would be approximately 132 ft. Our answer seems reasonable.

6 in equals 0.5 ft. We 
had this memorized, 
but if we didn’t, we 
could have multiplied 
by a conversion ratio to 

see this: ​6 in​(​ 1 ft ___ 6 in​)​  

= 6 in​(​  1 ft ____ 12 in​)​ = ​ 6 __ 12​ ft  

= ​1 _ 2​ ft = 0.5 ft ​

Notice that we didn’t 
round until the end 
in order to preserve 
as much accuracy as 
possible.
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Notice that we did not use the information about the number of times the horse 
goes around the ring that was given. Sometimes in real-life problems, we don’t 
really need all the information we know. 

Also notice that we ended up needing to perform several calculations in order to 
find the requested answer. Real-life problems often take several steps to solve; 
thinking through what you know and how you can figure out what you don’t know 
upfront is important!

A Reminder About Ratios and Percents
While the problem we walked through assumed a knowledge of circles, 
many real-life problems assume other knowledge that you should have from 
previous courses. Here’s a quick review of ratios and percents, which will 
come up on problems in this course. 

•	 As we reviewed in Chapter 1, a ratio is basically a comparison via 
division. You’ll find them coming up in problems dealing with such 
things as “cost per yard” or “costs a certain amount a yard.” Here we’re 
comparing the cost divided by unit. To help solve these problems, set 
up ratios just like you do for units of measure. Dollars per hour can be 

written ​​dollars _____ hour  ​​, cost per gallon can be written ​​  cost _____ gallon​​, etc. For example, 

if you have 200 lb of a substance that costs $0.20 cents per pound, you 

can find the total cost like this: ​200 lb ​(​$0.20 ____ lb ​ )​ = $4.00​. Notice how your 

units canceled out.
•	 The word percent is “short for Latin per centum, by the hundred.”7 Per 

actually means “by,” and centum means “hundred.”8 Thus, 1 percent 
means “1 per 100.” Notice the use of the word per. To rewrite 20% as a 

decimal, just divide it by 100: ​​ 20 ___ 100​ = 0.20​. Percents are just a shorthand 
way of writing comparisons by 100 — that is, ratios with 100 in the 
denominator!

Keeping Perspective
Work was part of God’s original design. While sin has made work harder, 
work itself is a tremendous, God-given gift. And the problem-solving and 
study skills you develop in this course can help you in your work, whatever 
that ends up being.  

The Lord God took the man and put 
him in the garden of Eden to work it 
and keep it. (Genesis 2:15; ESV)
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4.5 Substitution
One incredibly helpful tool we can use to help us solve a problem is called 
substitution. This tool, as with the ones we’ve been looking at, helps us 
complete real-life tasks. Let’s take a look.

Understanding Substitution
Let’s say you know that the cost of tuition (​t​) for a semester at a specific 
university equals $670 times the number of credits you take (​c​).

​t = $670c​

Let's say you estimate the cost of textbooks (b) to be $80 times the number of 
credits you take (c). 

​b = $80c​

Let’s also say that your budget for the semester (​B​) needs to equal the cost of 
tuition (​t​) plus the cost of textbooks, plus $500 for your room and board.

​B = t + b + $500​

Notice from up above that we know what ​b​ equals — $80 times the number 
of credits. Since​ b​ and ​$80c​ represent the same amount we can use them 
interchangeably. We can substitute ​$80c​ for ​b​ in the ​B = t + b + $500​ equation.

​B = t + $80c + $500​

Notice that we’re building on the concept of equality. We know if two quantities are 
equal, then we can use them interchangeably! In other words, we can substitute one 
for another. This will hold true because of the consistent way God governs all things.

We also know that ​t = $670c​, so guess what? We can substitute ​$670c​ for ​t ​in 
the ​B = t + $80c + $500 ​equation.

​B = $670c + $80c + $500​

Now we have an equation to use to compute our budget based on how many 
credits we decide to take.

You may have noticed that the phrase “plugging in” is also used to indicate 
substituting a value for a value it equals. Both “plugging in” and “substituting” 
mean the same thing. 

Substitute and Insert Values at the End
When solving in-depth real-life problems, it will save you a lot of time (and 
mistakes!) if you use letters to stand for values up until the final calculation. 
That way, you don’t have to keep track of units of measure every step of the 
way or perform a bunch of calculations.

Sometimes when exploring God’s creation with math we encounter problems 
that literally take pages to solve. In those situations, waiting to plug values in 
until the end saves us a lot of time and energy . . . especially when those values 
have complicated units.

We could combine 
like terms to simplify ​
B = $670c + $80c + 
$500​ further to this: ​
B = $750c + $500​. 
We’ll go over combining 
like terms in the next 
chapter.
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Save yourself time down the road and develop the habit of using letters as 
long as you possibly can in a problem. 

Substitution and Units
Have you noticed how the units in many real-life equations get rather 
cumbersome? Consider the unit for force we get when solving for the force 
due to gravity produced by 2 objects: 

​kg • ​m __ ​s​​ 2​ ​​

These units sure aren’t fun to keep track of, are they? As we saw in Lesson 2.5, 
we have a special name for ​kg • ​m __ ​s​​ 2​ ​​. We call it a newton (after Isaac Newton, 
who worked on describing the way God causes objects to attract to each other 
. . . or what is more commonly called gravity). A newton is abbreviated N.

​N = kg • ​m __ ​s​​ 2​ ​​

Knowing this, we can substitute ​N​ for ​kg • ​m __ ​s​​ 2​ ​​.

​90,000 kg • ​m _ ​s​​ 2​ ​ = 90,000 N ​

Notice that we really just used substitution!

Often in physics problems, you’ll be given values in newtons. You can then 
solve the problem using newtons up until the end, at which time you can 
substitute kg • ​​m __ ​s​​ 2​ ​​ for N to find the correct unit for your answer.  For example, 
look back at the example solved for ​r​ in Lesson 4.2. We got the equation 
simplified to this:

​r = ​√ 

_______________________
   ​ 

​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​​m​​ 3​ • kg ______ ​s​​ 2​ ​ ​)​​
   _______________________  

N
 ​  ​​	 (the equation simplified)

And then substituted ​kg • ​m __ ​s​​ 2​ ​​ to finish simplifying the units.

​r = ​√ 

_______________________
   ​ 

​(​​1.6675 × ​10​​ −9​​)​​​(​​ ​​m​​ 3​ • kg ______ ​s​​ 2​ ​ ​)​​
   _______________________  

kg • ​m __ ​s​​ 2​ ​
 ​ ​ ​	 (substituted ​kg • ​m __ ​s​​ 2​ ​​)

Keeping Perspective
It’s easy in upper math to get lost in the mechanics of equation manipulation. 
Always remember, though, that we manipulate equations so that we can solve 
problems. The main idea behind all the different tools you’ve learned and will 
continue to learn in algebra is to use what you know about the consistencies 
God created and sustains to figure out unknown information. Using multiple 
equations and substituting a value from one into another is one handy way to 
do this.

	 [130] Principles of Algebra 2



4.6 Chapter Synopsis 
In this chapter, we reviewed the basics of solving for unknowns. 
Be sure to look over the Key Skills and make sure you’re 
comfortable with solving equations and inequalities for an unknown value. 

On one of the worksheets that goes with this lesson, you’re also going to get a 
chance to apply what you’ve been learning to see how blood pressure relates 
to the distance from the heart . . . and at the amazing way God designed 
giraffes!

Key Skills for Chapter 4

Be able to solve simple equalities and inequalities for a single 
unknown. 

•	 Understand that we can perform the same operation using the same 
value on both sides of an equality without changing the value and use 
this knowledge to solve problems. (Lesson 4.1)
Examples:	2​𝑥 + 7 = − 2​

2​𝑥 = − 9​ 	 (subtracted 7 from both sides) 

 ​𝑥 = ​− 9 ___ 2  ​​	 (divided both sides by 2)

•	 Understand the concept of equality, and that ​𝑥​ = 2 is the same thing 
as 2 = ​𝑥​ (we can switch sides of the equals sign without affecting the 
meaning). (Lesson 4.1)

•	 Know how to take the same root of both sides of an equation to find 
an unknown, knowing that even roots will have 2 possible answers: a 
positive and a negative. (Lesson 4.2)
Examples:	​​2𝑥​​ 2​ = 98​

​​√ 
_

 ​𝑥​​ 2​ ​ = ​√ 
_

 49 ​​	 (took the square root of both sides) 
​𝑥 = ± 7​ 

•	 Understand that we can add, subtract, multiply, and divide both sides of 
an inequality by the same positive amount without changing the value 
and use this knowledge to solve problems. (Lesson 4.3)
Examples:	2​𝑥 − 4 > 8​

​2𝑥 > 12​ 	 (added 4 to both sides)
​𝑥 > 6​	 (divided both sides by 2)

•	 Understand that when multiplying or dividing both sides of an inequality 
by the same negative amount, the direction of the sign has to change. 
(Lesson 4.3)
Examples:	​− 2𝑥 − 4 > 8​

–​2𝑥 > 12​ 	 (added 4 to both sides)
​𝑥 < − 6​	� (divided both sides by –2 and changed 

the direction of the sign)
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•	 Understand that when switching the sides of an inequality, we have to 
also change the direction of the sign to keep the larger part of the sign 
with the greater amount. (Lesson 4.3)
Examples:	​8 > 𝑥​

​𝑥 < 8​
Know the process to follow to think through word problems. (Lesson 
4.4) Remember to not panic, think before you start, see if your answer makes 
sense, and don't round until the end (and know how to use your calculator).
Understand how to substitute values for unknowns. (Lesson 4.5)  

Example:	 If ​𝑥​ = 5c and 4​𝑥​ = 10, then 4(5c) = 10.

1	 Based on New Oxford American Dictionary, 3rd ed. (Oxford University Press, 2012), Version 2.2.1 
(156) (Apple, 2011), s.v., “algebra.”

2	 Leonard Euler, Elements of Algebra, by Leonard Euler, Translated from the French; with the  
Additions of La Grange, and the Notes of the French Translator (London: J. Johnson and Co., 1810), 
https://books.google.com/books?id=hqI-AAAAYAAJ&pg=PR1#v=onepage&q&f=false, p. 270, 
quoted in Loop, Principles of Mathematics: Book 2, p. 176.

3	 James B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Addison Wesley, 2003),  
p. 255-280.

4	 See W. Thomas Griffith and Juliet Brosing, The Physics of Everyday Phenomena: A Conceptual 
Introduction to Physics, 6th ed. (New York: McGraw-Hill, 2009), p. 222.

5	 See Dr. Danny R. Faulkner, “The Second Law of Thermodynamics and the Curse” from Answers in 
Genesis (2013),  https://answersingenesis.org/physics/the-second-law-of-thermodynamics-and-the-
curse/. 

6	 Based on a problem in Eugene Henry Barker, Applied Mathematics for Junior High Schools and 
High Schools  (Boston, MA: Allyn and Bacon, 1920). Available on Google Books, p. 226,  
http://books.google.com/books?id=-t5EAAAAIAAJ&vq=3427&pg=PR2#v=onepage&q&f=false.

7	 The American Heritage Dictionary of the English Language, 1980 New College Edition, s.v. “per 
cent.”

8	 Ibid.

9	 New Oxford American Dictionary, 3rd ed. (Oxford University Press, 2012), Version 2.2.1 (156) (Apple, 
2011), s.v., “element.”

10	 James Robert Overman, Principles and Methods of Teaching Arithmetic (New York: Lyons and 
Carnahan, 1920), https://books.google.com/books?id=6gcCAAAAYAAJ&dq=principles%20and%20
methods%20of%20teaching%20arithmetic%20overman, p. 256.

Chapter 4 Endnotes:
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8.1 Introducing and Categorizing  
Polynomials and Polynomial Functions
In the last chapter, we began exploring real-life mathematical relationships 
that have one output for every value we input. We saw that we call these 
relationships functions and that there is a lot to explore with functions 
because God created a complex creation with lots of different types of 
mathematical relationships.

Now, it’s time to begin digging deeper into functions. As we do, we’re going to 
begin using different names to describe functions with specific characteristics. 
Much like names help us describe specific types of dogs (retrievers, poodles, 
etc.) and specific types of numbers (negative, positive, imaginary, etc.), we can 
use names to help us describe specific types of functions. Knowing the type 
of function a relationship is tells us a lot about the relationship. For example, 
when I say “poodle,” you instantly know some things about the type of dog 
I’m talking about, right? Knowing the name helped you know a bit about 
what I was discussing . . . and it will be the same way with different types of 
functions.

For this chapter and the next, we’re going to focus on what we call 
polynomial functions. What is a polynomial function? Before we jump into 
that, we need to understand what we’re meaning by the word polynomial.

Polynomials
We use the word polynomial to describe expressions that have only positive 
integer powers of the variables. In other words, we look at the variables 
in the expression and see if, when the expression is written without any 
fractions, the variables all have positive exponents. For example, ​​𝑥 _ 5 ​​ is a 
polynomial, since ​𝑥​, the variable, has a positive exponent (we can rewrite ​𝑥​ 

Chapter

Introduction to 
Polynomial Functions8
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as ​​𝑥​​ 1​​). However, ​​5 _ 𝑥 ​​ is not a polynomial, since ​𝑥​, the variable, would have a 

negative exponent if we rewrote it without the fraction:

​​5 _ 𝑥 ​ = ​ 5 _ ​𝑥​​ 1​​ = 5​𝑥​​ −1​​

We don’t care about the 5 — constants can have either positive or negative 
exponents. A polynomial is categorizing expressions based solely on whether the 
variables have positive integer powers.

Notice the word “integer” in the definition. This means that ​​d​​ 3​​ is a polynomial 

while ​​V​​ ​
1 _ 3​​​ is not. This is because 3 is an integer, but ​​1 _ 3​​ is not. 

Examples of Polynomials Example Meaning
​3c​ 3 tickets times the cost of each ticket

​​𝑥 _ 5 ​​ the total ticket cost divided by the 5 
tickets purchased

​​π​d​​ 3​ _ 6 ​​ the volume of a sphere with diameter ​d​

​2t + 5​ 2 tickets times the cost of each ticket 
plus a $5 parking fee

​2t + p + 5​ 2 tickets times the cost of each ticket 
plus the cost of a bucket of popcorn plus 
the $5 parking fee 

​2t + 2d + p + 5​ 2 tickets times the cost of each ticket 
plus 2 times the cost of dinner plus the 
cost of a bucket of popcorn plus the $5 
parking fee 

​2π​r​​ 2​ + 2πrh​ the total surface area of a cylinder with 
radius ​r​ and height ​h​

Examples of Non-polynomials Example Meaning

​​ 5 _ 𝑥​​ 
This is not a polynomial because 
when written without a fraction, 
this would be 5​​𝑥​​ −1​​, and the 
variable would have a negative 
exponent.

the total ticket cost of $5 divided by the 
number of tickets purchased

​​a​​ −8​​
This is not a polynomial because 
the variable has a negative 
exponent.

the probability of rolling a specific value 
on a die with a sides if you have 8 rolls

​​V​​ ​
1 _ 3​​ ​ 

This is not a polynomial because 
the variable has a non-integer 

power ( ​​1 _ 3​​ is not an integer!).

the length of a side of a cube in terms of 
its total volume ​V​

The prefix poly means 
“more than one, 
many, or much,”1 and 
some definitions of 
polynomials say that a 
polynomial has more 
than 1 term.2 Under 
this definition, then, ​​𝑥 _ 5 ​​ 

would not appear to be 
a polynomial. However,  
we could always add 

a 0 to ​​𝑥 _ 5 ​​ to give the 

expression a second 

term: ​​𝑥 _ 5 ​ + 0​. It is 

common to use the 
word polynomial to 
describe expressions 
that have only positive 
integer powers of the 
variables, regardless 
of the number of terms 
(after all, we could 
always add terms worth 
0 to it). But know that 
definitions can (and 
do!) vary.
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When determining if an expression is a polynomial, only look at the variables. It 
doesn’t matter what the constants are raised to — it only matters if the variables 
have positive integer powers.

Polynomial Functions
Any guesses what a polynomial function is? That’s right — a polynomial 
function is a fancy way of describing a function that’s a polynomial — 
that is, a function with only positive integer powers in the independent variable 
(i.e., the input).

The function ​y​(𝑥)​ = ​7 _ 𝑥 ​ + ​𝑥​​ 2​​ would not be a polynomial function, as there is 

an ​𝑥​ is in the denominator of the first term. If we were to rewrite ​​7 _ 𝑥 ​​ without 

the fraction, we’d have ​​𝑥​​ −1​ . . . ​a negative power. Similarly, ​y​(𝑥)​ = 2​𝑥​​ 5​ + 3​𝑥​​ ​
2 _ 5​​​ is 

not a polynomial function since a term has a fractional exponent of ​​2 _ 5​​ and the 
exponents of variables in polynomials have to all be integers.

Categorizing Polynomial Functions
Much like we further categorize dogs based on their features, we can further 
categorize polynomials based on their features. We’ll learn 3 different ways to 
categorize them in this lesson.

Categorizing by the Number of Terms
We have specific names for polynomials with only 1 term (monomial), 2 
terms (binomials), 3 terms (trinomial), etc. 

These terms apply to polynomials once they are simplified. For example, ​𝑥 + 0​ 
is a monomial, as it simplifies to ​𝑥​. Always simplify first before categorizing a 
polynomial.

Monomial Binomial Trinomial

polynomial with 1 term 
when simplified
Examples: 

​3c​ 𝑥 _ 5​​ 

​​π​d​​ 3​ ____ 6 ​​  

polynomial with 2 terms 
when simplified
Examples: 

​2t + 5​ ​​​

​2π​r​​ 2​ + 2πrh​

​3​𝑥​​ 3​ + ​ 𝑥 _ π​​

polynomial with 3 terms 
when simplified
Examples: 

​2t + p + 5​

​5​𝑥​​ 2​ + 2𝑥 + 3​

​​𝑥​​ 5​ + ​ 𝑥 _ 2​ + d​

We only need to look at 
the input in functions 
to determine if it’s a 
polynomial function; it 
doesn’t matter if other 
unknowns (​a​, ​b​, etc.) 
are raised to other 
powers since in the 
context of a function 
other unknowns are 
treated as constants. 
For example,  

​y​(𝑥)​ = 4​a​​ 
​1 _ 2​
​ ​𝑥​​ 2​​ is a 

polynomial function 
even though ​a​ is not 
raised to an integer; it 
only matters that ​𝑥​ (or 
the input) is raised to a 
positive integer. 

You may have also 
heard polynomials 
defined as a monomial 
or the addition or 
subtraction of 2 or 
more monomials. This 
is a different way of 
defining the same thing. 
Feel free to remember 
it however is simplest 
for you.3
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Categorizing by the Highest Degree of the Input 
Another way to categorize polynomials is by what we call the highest degree 
to which the input is raised. The degree of a function is simply a fancy way 
of describing the highest power (i.e., exponent) to which the input is raised. 
For example, we’d say ​f​(𝑥)​ = ​𝑥​​ 4​ + 𝑥​ is a fourth-degree polynomial function, 
since the highest power of ​𝑥​ is 4. The chart illustrates this point, using an ​𝑥​ to 
stand for the input.

First-Degree Polynomial Function (i.e., Linear Function)
​f​(𝑥)​ = 5𝑥 + 3​
The highest power ​𝑥​ is raised to is 1. Note: ​​𝑥​​ 1​​ means the same thing as ​𝑥​, 
so we don’t typically write the 1.

Second-Degree Polynomial Function (i.e., Quadratic Function)
​f​(𝑥)​ = 3​𝑥​​ 2​ + 2𝑥 + 3​
The highest power ​𝑥​ is raised to is 2.

Third-Degree Polynomial Function (i.e., Cubic Function)
​f​(𝑥)​ = 5​𝑥​​ 3​ + 3​𝑥​​ 2​ + 6𝑥 + ​a​​ 4​​
The highest power ​𝑥​ is raised to is 3. Note: It doesn’t matter that ​a​ is 
raised to the 4th power . . . we only care what the highest value the input 
is raised to.

Fourth-Degree Polynomial Function (i.e., Quartic Function)
​f​(𝑥)​ = 6​𝑥​​ 4​ + 2​𝑥​​ 3​ + 5​𝑥​​ 2​ + 2𝑥 + 3​
The highest power ​𝑥​ is raised to is 4.

Fifth-Degree Polynomial Function
​f​(𝑥)​ = 6​𝑥​​ 5​ + 5​𝑥​​ 4​ + 2​𝑥​​ 3​ + ​𝑥​​ 2​ + 𝑥​
The highest power ​𝑥​ is raised to is 5.

 . . . and so forth!

You might notice that some of the polynomial functions have 
additional names: linear, quadratic, cubic, etc. These are additional 
names we can use to describe functions with those properties! We’ll explore 
linear functions and quadratic functions more in the next couple of lessons. 
Hopefully, you’ve already worked some with them in other math courses. 

We can combine naming systems when describing polynomials. For example, we 
could call ​4𝑥 + 5​ a first-degree polynomial function . . . and a binomial . . . and a 
linear function! One naming system describes the highest degree of the input, the 
other the number of terms, and the other that it forms a line when graphed.

Any guesses why a cubic function is called a cubic function? If you guessed 
because the equation for finding the volume of a cube based on its side results 
in a cubic function, you guessed right!

​​V​ cube​​ = ​s​​ 3​​

You might be wondering 
why we call a second-
degree polynomial 
function a quadratic 
function, since we 
typically associate 
quad with 4, not 2. The 
answer is because of 
how quadratic functions 
help us describe 
squares. We’ll explore 
this more in the next 
chapter.

s

s

s
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Notice that ​​V​ cube​​ = ​s​​ 3​​ and ​f​(𝑥)​ = 5​𝑥​​ 3​ + 3​𝑥​​ 2​ + 6𝑥 + ​a​​ 4​​ look very different at first 
glance. But for both of them, the highest power of the input/independent variable 
(the ​s​ in the first function and the ​𝑥​ in the second) is 3 . . . so they’re both cubic 
functions!

Categorizing Based on Even or Odd 
In the last chapter, we mentioned how functions can be either even, odd, or 
neither depending on how the outputs for the same negative and positive 
inputs compared. Well, now that you know about degrees of polynomials, 
you’re ready to learn a shortcut for telling which a polynomial function is. 
Even and odd is yet a further way of categorizing functions . . . including 
polynomial functions.

Polynomial functions are even when all the independent variables have even powers, 
and odd when they have odd powers. If the powers of the independent variable are 
both even and odd, then the function is neither even nor odd. 

Identifying Even and Odd Polynomial Functions
Even Functions Odd Functions Neither Odd nor Even

The output will be the same 
for the positive input as for the 
same negative input.

The output for a negative input 
will be the same absolute value 
as for the same positive input, 
except that the sign will change.

We can’t figure out what the 
negative values will be based 
on the positive ones alone, as 
the output for a positive input 
and the same negative input are 
different altogether.

Example:​ f​(𝑥)​ = ​𝑥​​ 4​ + ​𝑥​​ 2​ + 3​

​= ​𝑥​​ 4​ + ​𝑥​​ 2​ + 3​𝑥​​ 0​​
All exponents of the input are 
even.

Example: ​​f​(𝑥)​ = 𝑥​​ 3​ + 𝑥​

​= ​𝑥​​ 3​ + ​𝑥​​ 1​​
All exponents of the input are 
odd.

Example: ​f​(v)​ = ​v​​ 5​ + 3​v​​ 2​​

​= ​v​​ 5​ + ​v​​ 2​​
All exponents of the input are 
both even and odd.
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same output for an input of 
both –2 and 2

same output, different signs for 
an input of –2 and 2

totally different outputs for an 
input of –2 and 2
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In determining this, it’s important to note the following:

•	 Constants count as even powers. After all, a constant equals the 
same value, whether ​𝑥​ is positive or negative. In fact, a constant could be 
written as a multiplication by ​​𝑥​​ 0​​, since ​​𝑥​​ 0​ ​equals 1 and multiplying by 1 
doesn’t change the value. We could think of 3 as 3​​𝑥​​ 0​​ . . . in which case ​𝑥​ 

has an even power, since 0 can be evenly divided by 2 (i.e., ​​​0 _ 2​ = 0​)​​.​​

•	 𝒙 can be written as ​​𝒙​​ 1​​, so 𝒙 has an odd power. 

The rules for figuring out if a polynomial is odd or even makes sense when you think 
about multiplying negative numbers. When the input has only odd powers, then 
there will be an odd number of multiplications . . . which will yield a negative result 
when there’s a negative input, and a positive when there’s a positive. 

On the other hand, an even number of multiplications yields a positive result for 
the same negative and positive input. Since the powers tell us how many times 
to multiply the input by itself, an even exponent will always result in a positive 
answer.

Example: Is ​f​(𝑥)​ = ​𝑥​​ 3​ + 2𝑥​ odd, even, or neither?

It is odd. Both powers of ​𝑥​ (3 and an unwritten 1) are odd. 

Example: Is ​f​(t)​ = ​t​​ 6​ + 2​t​​ 4​ + 3​t​​ 2​ + 5​ odd, even, or neither?

It is even. The exponents 6, 4, and 2 are all even. And even though the 
last term (the 5) doesn’t have a t in it, constants count as even — they 
give the same output regardless of whether the input is negative or 
positive. After all, we could rewrite 5 as ​5​t​​ 0​​ without changing the value.

Example: Is ​f​(𝑥)​ = 4​𝑥​​ 3​ + 7​ odd, even, neither?

It is neither. Although the one term with an ​𝑥​ has a power of 3 and you 
would think it is odd, the constant added is considered even.

Keeping Perspective
The different ways of describing polynomials we looked at in this lesson are 
simply useful words to know. We’ll use them to help us describe and better 
explore different types of real-life relationships. The point of learning names 

to describe specific types of functions is so that we can better understand 
and describe the real-life mathematical relationships around us . . . 

consistencies held together by our never-changing, all-
powerful God.

Much like Adam named the animals in the 
Garden of Eden, we’re using names to 
help us categorize and communicate about 

God’s creation. If I tell you that a function is a 
trinomial fourth-degree function, you instantly 
know a lot about that relationship — provided, 

of course, that you know what those words mean.
	 [232] Principles of Algebra 2



8.2 Overview of Linear Functions
Let’s now zoom in further and look at one specific type of polynomial 
function: linear functions.

Recall from the last lesson that linear functions are another name for first-
degree polynomial functions — that is, polynomial functions in which the 
input is raised to the first degree — that is, where the input’s highest exponent 
is 1. The following are all examples of real-life linear functions. Keep in mind 
that ​𝑥​ and ​​𝑥​​ 1​​ mean the same thing.

-6 -4 -2 0 2 4 6t

f (t)

-6 -4 -2 0 2 4 6a

f (a)

-6 -4 -2 0 2 4 6
�

f (�)

​​d​(t)​ = 4t​​ ​​F​(a)​ = 3a​​ ​​T​(𝑥)​ = 𝑥​​
​​distance = 4​(time)​​​ ​​Force = 3​(acceleration)​​​ ​Total = 𝑥​

The name linear fits, as when graphed, first-degree polynomial functions 
produce a straight line (notice the line in linear). They can all be written in 
this form, which is called the slope-intercept form:

​f​(𝑥)​ = m𝑥 + b​
where ​m​ (the slope) and ​b​ (the vertical coordinate of the 𝑦-intercept)  

represent constants

When we refer to the form of a function, keep in mind that the actual letters and 
values can (and do!) vary. We’re meaning that the equation could be arranged 
to have this same structure, where there’s an independent variable (shown as ​𝑥​) 
multiplied by some value (shown as ​m​) with a value (shown as ​b​) added to it. 

Notice how we could rewrite each of the examples given above to be in this 
form. 

​​d​(t)​ = 4t + 0​​     ​​F​(a)​ = 3a + 0​​     ​​T​(𝑥)​ = 1𝑥 + 0​​

All we did was add 0 (which doesn’t change the value) and, in the case of 
T(𝑥), multiply 𝑥 by 1 (which also doesn’t change the value). 

You may have seen this 
written as 𝑦 = m𝑥 + b 
in previous courses. 
This means the same 
thing, except we’ve 
used function notation, 
writing f​​(𝑥)​​ to 
represent the output 
instead of 𝑦.
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Example: Rewrite ​g​(𝑥)​ = 𝑥​ in slope-intercept form.

We will add a “+ 0” on the right, since adding 0 doesn’t change the 
value.

​g​(𝑥)​ = 𝑥 + 0​

And we can write a 1 in front of the ​𝑥​ to show multiplying it by 1, since 
multiplying by 1 doesn’t change the value.

​g​(𝑥)​ = 1𝑥 + 0​

The function is now written in slope-intercept form.

You may sometimes need to simplify in order to rewrite in slope-intercept form.

Example: Rewrite ​f​(a)​ = ​​a​​ 2​ __ a ​ + 5a + 3​ in slope-intercept form.

At first glance this might not look like a linear function, but let’s 
simplify.

	​ f​(a)​ = ​​a​​ 2​ _ a ​ + 5a + 3​

	​ f​(a)​ = a + 5a + 3 ​

	​ f​(a)​ = 6a + 3​

Note that because the original function had a term divided by ​a​,  
​a​ cannot equal 0.

Remember that you can view subtraction as the addition of a negative number.

Example: Rewrite ​f​(𝑥)​ = 2𝑥 – 3​ in slope-intercept form.

Even though we have a subtraction with the –3, remember that we 
can think of subtraction as addition of a negative number. We could 
rewrite this function like this:

​f​(𝑥)​ = 2𝑥 + ​(–3)​​

Now it is in the form of ​f​(𝑥)​ = m𝑥 + b​, where ​m = 2​ and ​b = –3​.

Understanding What Each Value in a  
Linear Function Does
It can be helpful to understand how the different values in a function affect 
the function. Knowing that lets us instantly know what would happen to the 
overall function if a value changed. Let’s take a look at how the ​m​ and the ​b​ 
— that is, the coefficient of ​𝑥​ and the number being added to that product — 
affect the function.

	 [234] Principles of Algebra 2



𝒚-intercept

As we’ve already explored, the distance you’re able to travel equals your speed 
times your time.

​d = st​

So if you are traveling 10 ​​mi ___ hr ​,​ then the distance is a function of the time:

​d​(t)​ = ​(10 ​mi _ hr ​)​t​

But this relationship assumes a starting distance of 0. What if we’d already 
traveled 5 miles and wanted to see what the total distance would be based on 
the time we traveled going forward?

In that case, the total distance would still be the result of multiplying ​10 ​mi ___ hr ​​ 
and time . . . only we’d then want to add the 5 miles we’d already traveled to 
that. 

​d​(t)​ = ​(10 ​mi _ hr ​)​t + 5 mi​

That 5 mi is equivalent to ​b​ in the form we looked at earlier.

​f​(𝑥)​ = m𝑥 + b​

This amount being added tells us the starting mileage — that is, the starting 
value! Not surprisingly, then, it also tells us the vertical coordinate of the  
​y​-intercept — that is, what the output will be when the input is 0. After all, 
when the input is 0, the ​m𝑥​ equals 0, as 0 times any number equals 0, leaving 
us with just the value that we’re adding. This is just another way of saying that 
it’s showing the starting value — the output value when the input is 0.

-20 -15 -10 -5 0 5 10 15 20
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5

10​d​(t)​ = ​(10 ​mi _ hr ​)​t + 5 mi​

t, in hr

d​​(t)​​, in mi

𝑦-intercept​​ 
(0, 5 mi)

As we saw in the last chapter, we call the point at which a line or curve 
intersects the ​y​-axis the ​y​-intercept. Since in polynomial functions the value 
being added corresponds to the vertical coordinate of the ​y​-intercept, it’s 
common to refer to the constant being added (the ​b​ in f​​(𝒙)​​ = m𝒙 + b) 
as just the ​y​-intercept. 
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Slope

Now let’s talk about the value for the coefficient of the input and how it 
affects the function. Notice on the following graphs (which show the distance 
traveled based on time at various speeds) that the line gets more vertical 
the greater the coefficient of the input (our speed, in this case) gets. That’s 
because for each input, there’s a greater output, as it’s being multiplied by a 
greater number. We call the coefficient of the input (the ​m​ in  
​f​(𝒙)​ = m𝒙 + b​) the slope of the function. 

-6 -4 -2 0 2 4 6t

d (t)

-6 -4 -2 0 2 4 6t

d (t)

-6 -4 -2 0 2 4 6t

d (t)

​d​(t)​ = 2​(t)​​ ​d​(t)​ = 10​(t)​​ ​d​(t)​ = 20​(t)​​
As the coefficient of the input (the m in f(𝑥) = m𝑥 + b) increases, so does the steepness of the line.

Now you know why 𝑦 = m𝑥 + b is known as slope-intercept form. It makes it easy 
to spot the slope and the 𝑦-intercept! 

𝑦 = m𝑥 + b
vertical coordinate of the 𝑦-interceptslope  

Figuring Out the Formula from Data Only
Now, there’s a point to trying to understand slopes and intercepts. Sometimes 
in real life, we don’t know the relationship between inputs and outputs. We 
just have data points that we’ve collected and know the relationship is linear. 

For example, consider the data points shown on the graph, representing a few 
measurements made of the force and displacement of a spring. We know that 
the force of a compressed spring and its displacement relate in a linear way​. ​
But what function describes this particular line?
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Since it relates in a linear way, we know it can be written in the form  
​f​(𝑥)​ = m𝑥 + b​.

Now we know that the ​y​-intercept is 5, because we can see that’s where the 
line intersects the ​y​-axis. Thus we know b must equal 5.

​f​(𝑥)​ = m𝑥 + 5​

Now we just need to find the m. How do we do that? Well, we can figure it out 
by looking at the vertical change divided by the horizontal change between 
any 2 points. We can find this by just visually finding the change between any 
2 points on the line or by comparing the coordinates of the points using the 
formula ​​ 

​y​ 2​​ − ​y​ 1​​ _________ ​𝑥​ 2​​ − ​𝑥​ 1​​
​​. 

Finding the Slope

​slope = ​  vertical change  _______________  horizontal change​​ or ​​ ​y​ 2​​ − ​y​ 1​​ _________ ​𝑥​ 2​​ − ​𝑥​ 1​​
​​

(The ​​y​ 2​​​ and ​​𝑥​ 2​​​ stand for the ​y​ and ​𝑥​ values of any point on the line, and the ​​y​ 1​​​ and ​​
𝑥​ 1​​​ for the ​y​ and ​𝑥​ values of any other point.)
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horizontal change = 4

vertical change = 8

(2, 9)

(–2, 1)

Solving by visually finding the vertical change and the horizontal change and 
dividing the vertical change by the horizontal: 

​slope = ​  vertical change  _______________  horizontal change​ = ​8 _ 4​ = 2​

We'll get the same answer if we use any 2 points with the formula ​​ 
​y​ 2​​ − ​y​ 1​​ _________ ​𝑥​ 2​​ − ​𝑥​ 1​​

​​, as 

the formula finds the vertical change and the horizontal change. It doesn’t 
matter which point we view as the first and which as the second so 
long as we are consistent.

Viewing (2, 9) as the first point (and thus ​​𝑥​ 1​​​, ​​y​ 1​​​): 

(​​𝑥​ 1​​​, ​​y​ 1​​​) = (2, 9)     (​​𝑥​ 2​​​, ​​y​ 2​​​) = (–2, 1)	� (viewing (2, 9) as the first point 
and (–2, 1) as the second)

The word slope makes 
sense to describe the 
m, as it affects the 
steepness of the line, 
just like the slope of a 
mountain describes its 
steepness.

	 Lesson 8.2  [237]



​slope = ​ 
​y​ 2​​ − ​y​ 1​​ _ ​𝑥​ 2​​ − ​𝑥​ 1​​

​ = ​  9 − 1 __________ 
2 − ​(− 2)​

​ = ​8 _ 4​ = 2​	� (plugged in values into the 

formula and simplified)

Viewing (–2, 1) as the first point (and thus ​​𝑥​ 1​​​, ​​y​ 1​​​):

(​​𝑥​ 1​​​, ​​y​ 1​​​) = (–2, 1)     (​​𝑥​ 2​​​, ​​y​ 2​​​) = (2, 9)	� (viewing (–2, 1) as the first point 
and (2, 9) as the second)

​slope = ​ 
​y​ 2​​ − ​y​ 1​​ _ ​𝑥​ 2​​ − ​𝑥​ 1​​

​ = ​  1 − 9 _ − 2 − 2​ = ​− 8 _ − 4​ = 2​	� (plugged in values into the 

formula and simplified)

It wouldn’t have mattered if we had picked 2 completely different points on 
the line — the ratio between the vertical and horizontal change will be the same 
throughout since we’re dealing with a straight line. Note that this ratio holds true 
because of the consistent way God created and sustains creation. 

We’ve now found the linear function that describes this line:

​f​(𝑥)​ = 2𝑥 + 5​

Notice that, provided we know 2 points, we could have found the slope using 
the formula ​​ 

​y​ 2​​ − ​y​ 1​​ _________ ​𝑥​ 2​​ − ​𝑥​ 1​​
​​ even if we didn’t have a graph.  

Example: Given the data points (1, 5) and (–2, –4) for an unknown function, 
find the slope, given that the function is linear.

We’ll view one point as our first point (​​​𝑥​ 1​​, ​y​ 1​​​)​​​​ and the other as our 
second ​​​(​​​𝑥​ 2​​, ​y​ 2​​​)​​​​. It doesn’t matter which point we view as which. 

​slope = ​ 
​y​ 2​​ − ​y​ 1​​ _________ ​𝑥​ 2​​ − ​𝑥​ 1​​

​ = ​5 − ​(​​ − 4​)​​ _______________ 1 − ​(​​ − 2​)​​​ = ​9 _ 3​ = 3​ or ​slope = ​ 
​y​ 2​​ − ​y​ 1​​ _________ ​𝑥​ 2​​ − ​𝑥​ 1​​

​ = ​− 4 − ​(​​5​)​​ ___________ − 2 − ​(​​1​)​​​ = ​− 9 ___ − 3​ = 3​

The slope of a line that goes through both of these points is 3.

But what about the ​y​-intercept? Could we have found it without a graph? Yes! 
Here is the formula for finding the vertical coordinate of the 𝑦-intercept from 
data alone:

​y​-intercept​ = ​
​y​ 1​​ ​𝑥​ 2​​ − ​y​ 2​​ ​𝑥​ 1​​ ____________ ​𝑥​ 2​​ − ​𝑥​ 1​​

 ​​ 

And we already know the horizontal coordinate of the 𝑦-intercept — it will 
always be 0, as it has to be 0 in order for the line to be intersecting the 𝑦-axis. 

Example: Given the data points (1, 5) and (–2, –4), find the ​y​-intercept, 
assuming the function is linear. 

Once again, it doesn’t matter which point we view as which, so long as 
we remain consistent. We’ll view (1, 5) as (​​​𝑥​ 1​​,  ​y​ 1​​​​) and (–2, –4) as (​​​𝑥​ 2​​, ​y​ 2​​​​).
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​y​-intercept​ =  ​
​y​ 1​​ ​𝑥​ 2​​ − ​y​ 2​​ ​𝑥​ 1​​ ____________ ​𝑥​ 2​​ − ​𝑥​ 1​​

  ​ = ​5​(− 2)​ − ​(− 4)​​(1)​  __________________ − 2 − 1  ​ = ​− 10 − ​(− 4)​ ______________ − 3  ​ = ​− 6 ___ − 3​ = 2​ 

A line that goes through points (1, 5) and (–2, –4) intersects the ​y​-axis 
when 𝑦 = 2. This means the 𝑦-intercept is (0, 2). The formula helped us 
figure out the output when the input is 0 without having to actually see 
the graph or know the relationship.

If we put the vertical coordinate of the ​y​-intercept we found in the last 
example together with the slope we found for those same 2 data points, we 
have the function: ​f​(𝑥)​ = 3𝑥 + 2​. 

Here’s the graph of that function. Notice how the two points we were given 
are indeed on that graph, and that the 𝑦-intercept is at (0, 2). 
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Keeping Perspective
Now I know that was a lot of information packed into one lesson. But 
hopefully you’ve explored linear functions in the past and are already 
somewhat familiar with finding ​y​-intercepts and slopes. 

Today, ponder the fact that God doesn’t change . . . and because of that, we can 
use functions (including linear functions) to describe how aspects of creation 
will operate. If God doesn’t change, His message doesn’t change either. Many 
people claim God has told them things, but if what they’re claiming doesn’t 
match with Scripture, we can confidently know it’s not from God, as His  
message doesn’t change. It’s super important that we each know the Word  
and stay in it so that we’ll be able to tell if the ideas and thoughts we 
encounter tie with what God has said or not. Times may change,  
but His Word and Truth do not. 
They hold true in every era, just 
like the functions around us.

The grass withers,  
the flower fades,  
but the word of our  
God will stand forever.   
(Isaiah 40:8; ESV)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Note that even though 
we say 𝑦-intercept =  
here, this formula 
is really finding the  
vertical coordinate 
of the 𝑦-intercept. 
The horizontal or 𝑥 
coordinate will always 
be 0, as it has to be 
0 in order for the line 
to be intersecting the 
𝑦-axis. You should still 
list the 𝑦-intercept 
as an ordered pair. 
For example, if this 
formula gives an 
answer of 4, that 
means the 𝑦-intercept 
is at the point (0, 4).
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8.3 Beginning to Look at Quadratics  
(Minimum/Maximum Point and Vertex Form)
In the last lesson, we reviewed working with linear functions. In the process, 
we saw that we can describe linear functions using a generalized form  
​f​(𝑥)​ = m𝑥 + b​ and can then use formulas to find the slope ​​​(​​m​)​​​​ and ​y​-intercept ​​​
(​​b​)​​​​. Knowing this can help us figure out the equation to describe a line based 
on just knowing a few points on the line — something that proves quite 
handy!

As we explore other types of functions, we’re also going to learn 
generalized forms we can use to describe them. And we will encounter 
various formulas describing how different numbers in the functions relate to 
values on the graph.

To practice working with functions as well as to prepare for exploring 
quadratic functions in the next chapter, we’re going to look today at how 
to find the minimum or maximum point of a quadratic function (that is, a 
polynomial function where the highest exponent of ​𝑥​ is a 2).

Reviewing Minimum and Maximum
When graphed, quadratics (i.e., 2nd-degree polynomials) form what is called 
a parabola and have either a maximum or a minimum, depending on which 
direction their curve opens.
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It’s easy to see on a graph where the minimum/maximum is, but how would 
we figure it out based on the equation alone? Knowing this will both help us 
manually graph quadratics (which you’ll learn to do in the next chapter). Let’s 
take a look.
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Finding the Minimum or Maximum of a Quadratic
Quadratic functions can all be written in this generalized form: 

​f​(𝑥)​ = a​𝑥​​ 2​ + b𝑥 + c​, where ​a​, ​b​, and ​c​ represent constants

Note: ​c​ is actually the vertical coordinate of the  ​y​-intercept. Think about it. 
The curve intersects the ​y​-axis whenever ​𝑥 = 0​. And when ​𝑥 = 0​, ​a​𝑥​​ 2​ + b𝑥​ 
would equal 0, as any value multiplied by 0 is 0. So the output would simply 
be whatever value ​c​ equals. 

It’s important to note that not every quadratic looks like the generalized form to 
start.

For example, ​f​(𝑥)​ = ​𝑥​​ 2​ + 5​ can be rewritten like this:  

​f​(𝑥)​ = 1​𝑥​​ 2​ + 0𝑥 + 5​

The feature that makes a function a quadratic is that it’s a polynomial where 
the highest exponent of the input is a 2. To identify what a, b, and c are, look at 
the coefficient of ​​𝒙​​ 2​​, 𝒙, and the constant . . . and note that these values may be 
1 (or in the case of b and c, 0). 

Example: Identify a, b, and c in f(𝑥) = ​​𝑥​​ 2​​ – 2.

Let's start by rewriting this in the form of f(𝑥) = a​​𝑥​​ 2​​ + b𝑥 + c. 

f(𝑥) = 1​​𝑥​​ 2​​ + 0𝑥 + – 2 

Now we can easily see that a = 1, b = 0, and c = –2. 

f(𝑥) = a​​𝑥​​ 2​​ + b𝑥 + c
f(𝑥) = 1​​𝑥​​ 2​​ + 0𝑥 + – 2 

Now, the input (i.e., horizontal value) at the minimum/maximum point of a 

quadratic equals ​− ​ b ___ 2a​​. We’ll write that like this:

​​𝑥​ min​|​​max​​ = − ​ b _ 2a​​

Remember, the ​a​ here is referring to the ​a​ in ​f​(𝑥)​ = a ​𝑥​​ 2​ + b𝑥 + c​ — which is 
representing the coefficient of the ​​𝑥​​ 2​​. And the ​b​ is representing the coefficient 
of the ​𝑥​.

Knowing this formula and knowing the function is all we need to know to 
figure out the coordinates of the minimum or maximum point.

Example: Find the minimum or maximum coordinates of  
​f​(𝑥)​ = 2​𝑥​​ 2​ + 4𝑥 + 1​.

Here, the ​a​, or the coefficient of ​​𝑥​​ 2​​, is 2, and the ​b​, or the coefficient of ​
𝑥​, is 4. We’ll plug these values into the formula to find the input at the 
minimum or maximum point.

​​𝑥​ min​|​​max​​ = − ​ b _ 2a​ = − ​  4 _ 
2​(2)​

​ = − ​4 _ 4​ = − 1​
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​f​(𝑥)​ = ​𝑥​​ 2​ + 2𝑥 + 3​
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The input, or horizontal coordinate, at the minimum or maximum 
point is ​− 1​. But what is the output, or the vertical coordinate?

To find that, we need to plug this input into the function and see what 
the output at that point will be!

	​ f​(𝑥)​ = 2​𝑥​​ 2​ + 4𝑥 + 1​	 (original function)

	​ f​(− 1)​ = 2​​(− 1)​​​ 2​ + 4​(− 1)​ + 1​	 (plugged in ​− 1​ for ​​𝑥​)​​​​

	​ f​(− 1)​ = 2​(1)​ − 4 + 1 = − 1​	 (simplified)

Now we have both our coordinates. The minimum or maximum point 
will be at ​​​(​​− 1, − 1​)​​​​.

Notice that if we were to check our work by graphing the function, 
we’d find this holds true, as shown in the sidebar.

To find the minimum or maximum point of a quadratic written in the form  

​f​(𝑥)​ = a ​𝑥​​ 2​ + b𝑥 + c​, use the formula ​​𝒙​ min​|​​max​​ = − ​ b ___ 2a​​ to find the input value at the 

minimum or maximum. That will be the horizontal coordinate. Then plug that value 
into the function to find the output for that input value. That will be the vertical 
coordinate.

Example: Find the minimum/maximum coordinates for ​​f​(t)​ = t​​ 2​ − 2t − 3​.

Here, ​a​, the coefficient of ​​t​​ 2​​, is an unwritten 1 and ​b​, the coefficient of ​
t​, is –2. Let’s plug these values in to find the input at the minimum or 
maximum.

Watch your negative signs! Notice that we included the negative sign as part of the 
value of ​b​. After all, the generalized form of a quadratic (​ f​(𝑥)​ = a ​𝑥​​ 2​ + b𝑥 + c​) has 
positive signs in front of ​b𝑥​ and ​c​, so we have to treat any negative signs as part of 
the value of ​b​ and ​c​.
Always be careful when working with formulas based on generalized forms of 
functions that you watch out for your negative signs!

​​t​ min​|​​max​​ = − ​ b _ 2a​ = − ​ − 2 _ 
2​(1)​

​ = ​2 _ 2​ = 1​

The input at the minimum or maximum point will be 1. Let’s plug this 
value back into the function to find the corresponding output.

	​ ​f​(t)​ = t​​ 2​ − 2t − 3​	 (original function)

	​ f​(1)​ = ​​(1)​​​ 2​ − 2​(1)​ − 3​	 (plugged in a value of 1 for t)

	​ f​(1)​ = 1 − 2 − 3 = − 4​	 (simplified)

The vertical coordinate at the minimum/maximum is –4, meaning the 
minimum/maximum occurs at (1, –4).

Notice that if we were to check our work by graphing the function, 
we’d find this holds true, as shown in the sidebar.
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​f​(𝑥)​ = 2​𝑥​​ 2​ + 4𝑥 + 1​

Note that it doesn’t 
matter that we have ​
t​ instead of ​𝑥​ as the 
input. The point of  
the general form  
​f​(𝑥)​ = a​𝑥​​ 2​ + b𝑥 + c​  
is that ​𝑥​ represents  
the input, whatever 
that is. Likewise, in  

​​𝑥​ min​|​​max​​ = − ​ b ___ 
2a

​​, the ​𝑥​ 

represents the input, 
whatever that is.
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​​f​(t)​ = t​​ 2​ − 2t − 3​
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Minimum/Maximum and the ​𝑥​-intercepts/Roots
It’s worth pointing out that for quadratics, the minimum/maximum is always located 
halfway between the quadratic’s ​𝑥​-intercepts/roots. 

For example, the 2 ​𝑥​-intercepts 
in the function shown occur when ​
𝑥​ is 6 and –1. The difference 
between those 2 points is 7, as  
​6 − ​(− 1)​ = 6 + 1 = 7​. Half of 

that distance is 3.5, as ​​1 _ 2​​(7)​ = ​7 _ 2​ 
= 3.5.​ If you either subtract 3.5 
from 7 or add it to –1 you get 2.5, 

which is the horizontal coordinate 
for the maximum point! There’s 
more than one way to find the 
minimum/maximum point, 
depending on what information 
we know. You will learn more 
about finding the 𝑥-intercepts of 
quadratics in the next chapter.

An Alternate Formula
It’s worth noting that quadratic functions can be written in other forms, such 
as this one (called the vertex form; vertex is another term for the minimum/
maximum point): 

​f​(𝑥)​ = a ​​(𝑥 − h)​​​ 2​ + k​

Note that the ​a​ here is the same ​a​ as in the other form. Only instead of listing ​
b​ and ​c​, we’ve listed values called ​h​ and ​k​. 

When a quadratic is written in this form, it’s super easy to find the minimum 
or maximum: the ​h​ is the horizontal value at the minimum/maximum, and 
the ​k​ the vertical one.

Example: What is the minimum/maximum point of ​f​(𝑥)​ = 2​​(𝑥 − 1)​​​ 2​ + 3​?

Here, we can see that 1 is in the place where ​h​ was in the vertex form, 
and 3 where the ​k​ was. The minimum/maximum occurs at (​​1, 3​​).

Again, though, be sure to watch your positive and negative signs.

Example: What is the minimum/maximum point of ​f​(𝑥)​ = 5​​(𝑥 + 6)​​​ 2​ − 2​?

Note that in the vertex form, ​h​ is preceded by a negative sign, and ​k​ by 
a positive one. ​​​

​f​(𝑥)​ = a​​(𝑥 − h)​​​ 2​ + k​

Yet in ​f​(𝑥)​ = 5​​(𝑥 + 6)​​​ 2​ − 2​, ​h​ is preceded by a positive sign, and ​k​ by a 
negative one. Remember, 2 negative signs simplifies to a positive. We 
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​f​(𝑥)​ = – ​𝑥​​ 2​ + 5𝑥 + 6​

f(𝑥) = a​​​(𝑥 – h)​​​ 2​​ + k 

f(𝑥) = 2​​​(𝑥 – 1)​​​ 2​​ + 3

​f​(𝑥)​ = a​​(𝑥 – h)​​​ 2​ + k​ 

​f​(𝑥)​ = 5​​(𝑥 + 6)​​​ 2​ – 2​ 

​f​(𝑥)​ = 5​​(𝑥 – ​(– 6)​)​​​ 
2
​ + – 2​
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could rewrite + 6 as – (– 6). And we could rewrite –2 as + –2, giving us 
this:

​f​(𝑥)​ = 5​​(𝑥 − ​(− 6)​)​​​ 2​ + − 2​

Now that it’s in the same form as ​f​(𝑥)​ = a​​(𝑥 − h)​​​ 2​ + k​, we can see that ​
h​ is –6 and ​k​ is –2, so the minimum/maximum point is at (–6, –2).

It’s worth noting that using the vertex form, you can also write the function to 
describe a quadratic curve if you just know the minimum/maximum point!

Example: What function describes this parabola?
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Parabolas are what quadratic functions look like when graphed. Since 
we know the maximum point of this parabola, let’s plug those values 
into the vertex form. 

	​ f​(𝑥)​ = a ​​(𝑥 − h)​​​ 2​ + k​	 (vertex form)

	​ f​(𝑥)​ = a ​​(𝑥 − ​(− 5)​)​​​ 2​ + 4​	 (inserted values)

	​ f​(𝑥)​ = a ​​(𝑥 + 5)​​​ 2​ + 4​	 (simplified)

But wait — what is the value of ​a​? To find that, we need to use another 
point along the curve. Notice that we know that when the horizontal 
coordinate ​​(​𝑥​)​​ equals –4, the vertical coordinate ​​(f​(𝑥)​)​​ equals 1, as the 
curve passes through (​​–4, 1​​). So we can substitute –4 and 1 for ​𝑥​ and  
​​f​(𝑥)​​​ in the equation and then solve to find the value for ​a​. 

Note that the vertical 
coordinate here is 
represented in function 
notation as  
​​f​(​​𝑥​)​​​​. We could rewrite 
the function as  
​y = a ​​(𝑥 + 5)​​​ 2​ + 4​.  
We can insert 1 for  
​​f​(​​𝑥​)​​​​ or ​y​ because that is 
the vertical coordinate 
when ​𝑥 = − 4​.

	 [244] Principles of Algebra 2



Thus we have this:

	​ 1 = a​​(− 4 + 5)​​​ 2​ + 4​	� (inserted values for ​𝑥​ and ​​f​(𝑥)​​​ using 
the other point we were given)

	​ − 3 = a​​(1)​​​ 2​​	� (simplified inside the parentheses and 
subtracted 4 from both sides)

	​ − 3 = a​	 (simplified)

We found the value of ​a​. So the function that describes this curve is 
this:

	​ f​(𝑥)​ = − 3​​(𝑥 + 5)​​​ 2​ + 4​	 (plugged in –3 for ​a​)

Note that ​f​(𝑥)​ = 5​​(𝑥 + 6)​​​ 2​ − 2​ can also be written ​f​(𝑥)​ = 5​𝑥​​ 2​ + 60𝑥 + 178​ and  
​f​(𝑥)​ = − 3​​(𝑥 + 5)​​​ 2​ + 4​ can also be written ​f​(𝑥)​ = − 3​𝑥​​ 2​ − 30𝑥 − 71​. (You can verify 
this by graphing both forms on a calculator or by multiplying out and simplifying the 
vertex form — we’ll look at how to perform the multiplication in the next lesson.) 
The general form and vertex form are merely different ways of expressing the same 
relationship.

There are often different ways to express the same relationship. Each one proves 
useful in different settings. And now you know how to find the maximum and 
minimum point, regardless of which of these forms you’re given a quadratic  
function in.

Keeping Perspective
As we continue exploring functions, we’re going to encounter various 
formulas that help us generalize about different types of functions and 
describe how the different numbers in the function relate to the graph 
of the function. Knowing this can help us look at a function and instantly 
tell various properties about it. For example, we’ll see in the next chapter that 
finding the minimum/maximum point of a quadratic can help us graph that 
quadratic by hand. (While graphing is easier to do on a calculator, knowing 
how to graph common functions by hand helps you learn about those 
functions and better understand what number represents what.)

The goal is to be better equipped to explore and understand the real-
life functions God has placed around us. You’ll see on your worksheet 
several examples of quadratics in action (including describing the 
path of a ball in the air) — and we’ll explore a lot more in the next 
chapter!
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8.4 Working with Polynomial Expressions
For the next several chapters, we’re going to continue to look at polynomial 
expressions. Before we do, though, let’s review some skills we’ve already 
looked at, making sure you know how to apply them to polynomial 
expressions.

Distributing Multiplication with Multiple Expressions in 
Parentheses
Back in Lesson 5.5, we looked at what is referred to as the distributive 
property: a way of describing something true about multiplication that is true 
because of how God governs all things.

The Distributive Property of Multiplication
If you distribute multiplication among terms in an expression and then add those 
results together, you’ll get the same result as if you first did the addition and then 
multiplied by the sum.

a​​(b + c)​​ = ab + ac

So far, all of your problems related to the distributive property have only 
involved 2 expressions. You’ve learned in problems such as the one below to 
distribute each term of the first expression in parentheses by each term of the 
second.​​​

​​​(𝑥 + 2)​​(𝑥 − 2)​​​ = ​𝑥​​​(𝑥 − 2)​​ + 2​​(𝑥 − 2)​​ = ​​𝑥​​ 2​ − 2𝑥 + 2𝑥 − 4 = ​𝑥​​ 2​ − 4​

As we continue exploring polynomial functions, we’re going to find ourselves 
with more than 2 expressions, though, like this:

​​4​(𝑥 + 2)​​(𝑥 − 2)​​​

Or even like this:

​​​(​𝑥​​ 2​ − 2𝑥 − 3)​​(𝑥 + 2)​​(𝑥 − 2)​​​

How do we apply the distributive property in these cases? Let’s take a look.

Example: Distribute the multiplication in ​​4​(𝑥 + 2)​​(𝑥 − 2)​​​.

We can solve this by distributing one term at a time. We’ll distribute 
the 4 across the first parentheses.

​​4​(𝑥 + 2)​​(𝑥 − 2)​ = ​(​​4𝑥 + 8​)​​​(​​𝑥 − 2​)​​​​
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Notice that we did not multiply the 4 by both expressions in parentheses — just 
one of them. To understand why, think about it with numbers for a minute. Say ​𝑥​ 
equals 0 and the first expression in parentheses ends up equaling 2 and the second 
–2. We’d have this:

​​4​(2)​​(− 2)​​​
If we multiplied the 4 by both the 2 and the –2 and then multiplied that product by 
–2, we’d get the wrong answer! We know we need to multiply 4 by 2, getting 8, and 
then multiply 8 by –2, thereby only multiplying by each factor once.

​8​(− 2)​ = − 16​

When we distributed the 4 across the first parentheses, we were likewise multiplying 
the 4 by one of the other factors (the first expression in parentheses). 

​​4​(𝑥 + 2)​​(𝑥 − 2)​ = ​(​​4𝑥 + 8​)​​​(​​𝑥 − 2​)​​​​ ​​
Just to show that this did indeed work, notice that if we plug the same value in for ​
𝑥​ (we’ll use 0) to both sides of the above equation, we get the same answer. 

	​ ​4​(𝑥 + 2)​​(𝑥 − 2)​ = ​(​​4𝒙 + 8​)​​​(​​𝒙 − 2​)​​​​	� (left side is the original expression; 
right-hand side is the result of 
distributing the 4 across one 
expression in parentheses)

	​ ​4​(0 + 2)​​(0 − 2)​ = ​(​​4​(​​0​)​​ + 8​)​​​(​​​(​​0​)​​ − 2​)​​​​ 	 (substituted 0 for ​𝑥​)

	​ ​4​(2)​​(− 2)​ = ​(8)​​(​​− 2​)​​​​	� (simplified inside the expression in 
parentheses)

	 ​− 16 = − 16​	 (simplified)

We can then continue distributing the multiplication across the next 
term:

​​(4𝑥 + 8)​​(𝑥 − 2)​ = 4𝑥​(𝑥 − 2)​ + 8​(𝑥 − 2)​ = 4​𝑥​​ 2​ − 8𝑥 + 8𝑥 − 16​

And now we can simplify by combining like terms:

​4​𝑥​​ 2​ − 16​

Because multiplication is commutative and associative, it doesn’t matter in what 
order we distribute the multiplication. We could have multiplied the 4 by ​​(​𝑥 − 2​)​​  
instead of by ​​​(𝑥 + 2)​​​. The point is to just distribute it across 1 term, as that way 
we’ve accounted for that multiplication.

Note that you can check to see if your answer is correct by substituting 
a real number for the unknown in both your distributed expression 
and the original. If you did they math correctly, they should both 
simplify to the same value!

Original expression when ​𝑥 = 1​:

	​​ 4​(𝑥 + 2)​​(𝑥 − 2)​​​	 (original expression)

	​ 4​(1 + 2)​​(1 − 2)​ = 4​(3)​​(− 1)​ = − 12​	 (evaluated when ​𝑥 = 1​)

	 Lesson 8.4  [247]



Distributed expression when ​𝑥 = 1​:

	​ 4​𝑥​​ 2​ − 16​	 (distributed expression)

	​ 4 ​​(1)​​​ 2​ − 16 = 4 − 16 = − 12​	 (evaluated when ​​𝑥 = 1​)​​​​

The expressions equal when evaluated for the same value of ​𝑥​.

You can substitute a real number for an unknown to check yourself and see if 2 
expressions really are equal.

Example: Distribute the multiplication in ​​(​𝑥​​ 2​ − 2𝑥 − 3)​​(𝑥 + 2)​​(𝑥 − 2)​​.

Since order doesn’t matter, let’s multiply the ​​(𝑥 + 2)​​(𝑥 − 2)​ ​first, as 
they have fewer total terms:

​​(​𝑥​​ 2​ − 2𝑥 − 3)​​(𝑥 + 2)​​(𝑥 − 2)​ = ​(​𝑥​​ 2​ − 2𝑥 − 3)​​(​𝑥​​ 2​ − 2𝑥 + 2𝑥 − 4)​​

Now let’s simplify by combining like terms:

​​(​𝑥​​ 2​ − 2𝑥 − 3)​​(​𝑥​​ 2​ − 4)​​

Now we just multiply these two expressions in parentheses together, 
making sure we distribute each term:

​​(​𝑥​​ 2​ − 2𝑥 − 3)​​(​𝑥​​ 2​ − 4)​ ​= ​𝑥​​ 2​​(​𝑥​​ 2​ − 4)​ + –2𝑥​(​𝑥​​ 2​ − 4)​ + –3​(​𝑥​​ 2​ − 4)​ 
= 𝑥​​ 4​ − 4​𝑥​​ 2​ − 2​𝑥​​ 3​ + 8𝑥 − 3​𝑥​​ 2​ + 12​

And now we can simplify:

​​𝑥​​ 4​ − 2 ​𝑥​​ 3​ − 7 ​𝑥​​ 2​ + 8𝑥 + 12​

While we won’t show it here, we could substitute a value for ​𝑥​ to check 
our work.

When doing complicated distribution like this, just make sure you multiply each 
term of one expression in parentheses by each term of the other. Draw arrows 
between them if it helps you remember the ones you have multiplied as you go. 

Squaring Polynomials
Let’s say that a square has sides that are some value plus 2, or ​𝑥 + 2​. The area 
then would equal that value squared, or ​A = ​​(𝑥 + 2)​​​ 2​​. 

If we wanted to actually square 𝑥 + 2, we’d need to remember that squaring 
means multiplying by itself. We don’t want to just multiply ​𝑥​ by itself and 2 by 
itself. Instead, we want to multiply the entire term by itself.

​​​(𝑥 + 2)​​​ 2​ = ​(𝑥 + 2)​​(𝑥 + 2)​ = ​𝑥​​ 2​ + 2𝑥 + 2𝑥 + 4 = ​𝑥​​ 2​ + 4𝑥 + 4​

𝑥 + 2

𝑥 + 2

Here’s how we  
multiplied  
​​(𝑥 + 2)​​​​(𝑥 – 2)​​:

​​(𝑥 + 2)​​​​(𝑥 – 2)​​ 

= ​𝑥​​​(𝑥 – 2)​​ + 2​​(𝑥 – 2)​​ 

= ​​𝑥​​ 2​​ –2​𝑥​ + 2​𝑥​ – 4 

Only as you get more 
comfortable, you can 
do this step in your 
head. All you’re doing is 
multiplying the 1st term 
in the first parentheses 
by each term in the 2nd 
parentheses, and then 
multiplying the 2nd term 
in the first parentheses 
by each term in the 2nd 
parentheses. 
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Example: Distribute the multiplication in ​​​(3t + ​3 _ 4​)​​​ 
2

​​. 

Again, let’s just remember that squaring means multiplying the entire 
term by itself. 

​​(3t + ​3 _ 4​)​​(3t + ​3 _ 4​)​ = 9 ​t​​ 2​ + ​9 _ 4​ t + ​9 _ 4​ t + ​ 9 _ 16​ = 9 ​t​​ 2​ + ​18 _ 4 ​ t + ​ 9 _ 16​ = 9 ​t​​ 2​ + ​9 _ 2​ t + ​ 9 _ 16​​

In the last lesson, we looked at the vertex form and mentioned that it could be 
rewritten in the general form. You now know all you need to in order to do so! 

Example: Rewrite ​f​(𝑥)​ = –3 ​​(𝑥 + 5)​​​ 2​ + 4​ in the general form.

To rewrite this function (which is one of the vertex form quadratic 
examples we looked at in the last lesson), we just need to complete the 
multiplication on the right side! We’ll ignore the ​​f​(​​𝑥​)​​​​ for now and just 
write the right-side of the function. 

To start with, we need to remember that ​​​(𝑥 + 5)​​​ 2​​ means ​​​(𝑥 + 5)​​(𝑥 + 5)​​​.

​− 3​(𝑥 + 5)​​(𝑥 + 5)​ + 4​

Now, we can distribute in whatever order we choose. We’ll go ahead 
and distribute the ​​​(𝑥 + 5)​​​ by the ​​​(𝑥 + 5)​​​.

​− 3​(𝑥 + 5)​​(𝑥 + 5)​ + 4 = –3​(​𝑥​​ 2​ + 5𝑥 + 5𝑥 + 25)​ + 4​

Now let’s combine like terms inside the parentheses.

​–3​(​𝑥​​ 2​ + 10𝑥 + 25)​ + 4​

Now let’s distribute the –3.

​–3​(​𝑥​​ 2​ + 10𝑥 + 25)​ + 4 = –3​𝑥​​ 2​ − 30𝑥 − 75 + 4​ ​= − 3​𝑥​​ 2​ − 30𝑥 − 71​

We’ve now rewritten the right side of the function in the general form. 
We just need to add back ​​f​(𝑥)​​​ on the left.

​f​(𝑥)​ = − 3​𝑥​​ 2​ − 30𝑥 − 71​

Keeping Perspective
As problems get more terms to them, remember that the same principles you 
already know apply. The consistencies God created and sustains operate the 
same way in complicated problems as they do in simple — just think through 
what is happening and break them down step by step. And remember that 
you can substitute a real number for an unknown to check yourself and 
see if 2 expressions really are equal.

The worksheets that go with this lesson will help you review some key 
concepts you’ll need to remember as we continue exploring polynomials. 
Remember, these skills help us describe the complexities of God’s creation 
and complete the tasks He’s given us to do, as we’ll see more of as we 
continue.

Note that we multiplied 
each term in the first 
parentheses by each 
term in the second. We 
could have rewritten 
this out to clarify: 

3t​​(3t + ​3 _ 4​)​​ + ​​3 _ 4​​​​(3t + ​3 _ 4​)​​.
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8.5 Chapter Synopsis
Congratulations! You’ve now gotten a thorough introduction to functions and 
a closer look at polynomial functions in particular. For much of the second 
half of this course, we’re going to be continuing to explore functions in more 
depth, learning more about the incredible mathematical relationships God 
created and sustains all around us.

Key Skills

Know what a polynomial is and terms we use to describe 
polynomials based on their attributes. (Lesson 8.1) 
•	 A polynomial is an algebraic expression with only positive integer powers 

in the variables. For example, ​​𝑥 _ 2 ​ ​is a polynomial, while ​​ 2 _ 𝑥​​ is not, as it could 
be rewritten ​2 ​𝑥​​ −1​.​ The tables show more specific labels for polynomials 
with specific properties.

Labeling Polynomials Based on the Number of Terms
One Term: Monomial	​ 5𝑥​
Two Terms: Binomial	​ 5𝑥 + 2​
Three Terms: Trinomial	​ 7​𝑥​​ 2​ + 5𝑥 + 2​
Labeling Polynomials Based on the Highest Power
Highest Power is 1: Linear or First-Degree	​ 5​𝑥​​ 1​​ or ​5𝑥​
Highest Power is 2: Quadratic or Second-Degree	​ 5​𝑥​​ 2​​
Highest Power is 3: Cubic or Third-Degree	​ 5​𝑥​​ 3​​
Highest Power is 4: Quartic or Fourth-Degree	​ 5​𝑥​​ 4​​
Highest Power is 5: Fifth-Degree	​ 5​𝑥​​ 5​​
 . . . and so forth!
Note that a polynomial could be several things at once — the function  
​y = 5𝑥​ is a monomial, linear, and first-degree polynomial function!

Understand how to tell if a polynomial function is even or odd. If the 
input has only odd powers, then the function will be odd (and 𝑥 counts as 
odd — it can be written ​​𝑥​​ 1​​). Similarly, if all the input has only even powers 
(and 0 counts as an even power, so constants, which can be written as 
multiplications by ​​𝑥​​ 0​​ without changing their value, count as even powers), 
then the function will be even. If the input has both even and odd powers, 
the overall function will be neither. (Lesson 8.1)
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Use various formulas to describe linear functions from either the 
data or a graph. (Lesson 8.2)
Know how to work with generalized forms of functions and 
formulas, such as how to find the minimum or maximum point of a 

quadratic using the formula ​​𝑥​ min​|​​max​​ = − ​ b ___ 2a​​, knowing that quadratics can 

be written in the form ​f​(𝑥)​ = ​a𝑥​​ 2​ + b𝑥 + c​, where ​a​, ​b​, and ​c​ represent 
constants, and in the form ​f​(𝑥)​ = a ​​(𝑥 − h)​​​ 2​ + k​ (called the vertex form), 
where ​h​ is the horizonal value at the minimum/maximum point and ​k​ is the 
vertical value at that point. Also know how to write quadratic functions in 
vertex form if given the minimum/maximum point and one other point on a 
parabola (the curve a quadratic function forms). (Lesson 8.3)
Know how to apply the distributive property when multiplying 3 or 
more expressions. (Lesson 8.4)

Example:	 Distribute the multiplication in ​4​(𝑥 + 2)​​(𝑥 − 2)​.​ 
​​​(4𝑥 + 8)​​(𝑥 − 2)​​​	� (distributed the 4 by each term in the 

first parentheses)
​4​𝑥​​ 2​ − 8𝑥 + 8𝑥 − 16​ 	� (distributed each term in the first 

parentheses by each term in the 
second)

​4​𝑥​​ 2​ − 16​	 (combined like terms)
Know how to simplify squared polynomials. (Lesson 8.4)

Example: 	​ ​​(𝑥 + 2)​​​ 2​ = ​(𝑥 + 2)​​(𝑥 + 2)​ = ​𝑥​​ 2​ + 2𝑥 + 2𝑥 + 4 = ​𝑥​​ 2​ + 4𝑥 + 4​
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​

​​

​

1	  The American Heritage Dictionary of the English Language, 1980 New College Ed., s.v., “poly–.”

2	  “An algebraic function of two or more summed terms . . . ” Ibid., s.v., “polynomial.” See also the 
definition given in Henry Lewis Rietz, Arthur Robert Orathorne, School Algebra: Book 1, ed. Edson 
Homer Taylor (New York: Henry Holt, 1915), p. 53.

3	 We defined a polynomial, and then defined a monomial based on that definition. In Elementary 
Algebra, Jacobs defines a monomial first, and then defines a polynomial as "either a monomial or 
an expression indicating the addition and/or subtraction of two or more monomials." Harold R. 
Jacobs, Elementary Algebra (Master Books, Green Forest, AR: 2016), p. 336. 

Chapter 8 Endnotes:
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Geometric Formulas
Shape Name Type of Shape Perimeter Area

Polygons
closed, two-
dimensional figure 
with straight lines

s

​P = sum of all side lengths​
​P = ​s​ 1​​ + ​s​ 2​​ + ​s​ 3​​ + … + ​s​ n​​​

View as multiple 
triangles or other 
simple polygons.

Regular Polygon
All sides equal and 
all angles congruent. 

s
​P​ = ​​(number of sides)​ × ​
(length of a side)​​
P = ns

View as multiple 
triangles or other 
simple polygons.

Parallelogram
four-sided polygon 
with both pairs 
of opposite sides 
parallel

h

b

s
​P = 2b + 2s​ ​A = bh​

Rectangle
parallelogram with 
right angles

l

w

​P = 2l + 2w​ ​A = lw​

​P = perimeter​ ​C = circumference​ A = area
​B = area of the base​ ​​C​ base​​ = circumference of base​
​r = radius​ ​d = diameter​

Appendix

Reference 
SectionB
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Shape Name Type of Shape Perimeter Area
Square
parallelogram with 
equal-length sides 
and right angles

s

​P = 4s​ ​A = ​s​​ 2​​

Triangle
three-sided polygon

h

b

​P = sum of all side lengths​
​P = ​s​ 1​​ + ​s​ 2​​ + ​s​ 3​​​

​A = ​bh _ 2 ​​

Shape Name Type of Shape Circumference, 
Diameter, and Radius Area

Circle
closed, two-
dimensional figure; 
each part of the 
edge is equally 
distant from the 
center

d

r

​C = πd = 2πr​
​d = 2r​

​r = ​1 _ 2​ d​

​A = ​π​d​​ 2​ _ 4 ​​
​A = π​r​​ 2​​

Solid Name1 Type of Solid Volume Area
Prism
solid with two bases 
that are parallel 
polygons and faces 
(sides) that are 
parallelograms

h

B

B

​V = Bh​ ​​A​ surface​​ = 2B + Area of 
each side​

Cylinder
Solid with two 
bases that are 
equal parallel 
circles, having an 
equal diameter in 
any parallel plane 
between them

h

B

B

​V = Bh​ ​​A​ surface​​ = ​C​ base​​h + 2B​

1	 Definitions of solids were based on Ray’s New Higher Arithmetic, Revised (Cincinnati: Van Antwerp, 
Bragg & Co., 1880), p. 390-391.
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Solid Name Type of Solid Volume Area
Cone
solid whose base is 
a circle, and whose 
other surface comes 
to a common vertex

s

r

h

​V = π​r​​ 2​ ​h _ 3 ​​ ​​A​ surface​​ = πrs + π​r​​ 2​​

Square Pyramid
solid with square 
base whose faces 
are triangles with a 
common vertex

B

s
h

​V = ​1 _ 3​ Bh​ ​​A​ surface​​ = B + sum of area 
of all faces (sides) ​
Or 
​​A​ surface​​ = B + 2s ​√ 

_
 B ​​

Sphere
solid bounded by 
a curved surface, 
every point of which 
is at the same 
distance from the 
center

r

​V = ​4 _ 3​ π​r​​ 3​​ ​​A​ surface​​ = 4π​r​​ 2​​

​P = perimeter​ ​C = circumference​ A = area
​B = area of the base​ ​​C​ base​​ = circumference of base​
​r = radius​ ​d = diameter​
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Units of Measure
Area – Other

1 acre = 43,560 ft2

Capacity – Dry 
•	 U.S. Customary 

2 pints (pt) = 1 quart (qt)
8 quarts = 1 peck (pk)
4 pecks = 1 bushel (bu) = 32 quarts (qt) 

•	 Conversion Between Systems 
1 quart ≈ 67.201 inches3

1 bushel = 2,150.420 inches3 

Note: The pint and quart here represent a larger capacity than the ones 
measuring liquid — they should not be used interchangeably. Unless the 
problem specifically states otherwise, you can assume pint and quart in 
this course refer to the liquid units.

Capacity – Liquid
•	 U.S. Customary 

3 teaspoons (tsp) = 1 tablespoon (Tbsp)
16 tablespoons = 1 cup (c)
2 cups = 1 pint (pt)
2 pints = 1 quart (qt) 
4 quarts = 1 gallon (gal) 
2 tablespoons (Tbsp) ≈ 1 fluid ounce (fl oz)
8 fl oz = 1 cup (c)
16 fl oz = 1 pint (pt)
32 fl oz = 1 quart (qt) 
128 fl oz = 1 gallon (gal) 

•	 Metric 
10 milliliters (ml or mL) = 1 centiliter (cl or cL)
10 centiliters = 100 milliliters = 1 deciliter (dl or dL)
10 deciliters = 100 centiliters = 1,000 milliliters = 1 liter (l or L)
10 liters = 1 dekaliter (dal or daL)
10 dekaliters = 1 hectoliter (hl or hL)
10 hectoliters = 1,000 liters = 1 kiloliter (kl or kL) 

•	 Conversion Between Systems 
1 teaspoon ​≈​ 4.929 milliliters 
1 gallon ​≈​ 3.785 liters 
1 pint = 28.875 in3 

1 quart = 57.75 in3 

1 gallon = 231 in3 
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Distance
•	 Distance – U.S. Customary

12 inches (in) = 1 foot (ft)
3 feet = 36 inches = 1 yard (yd)
1,760 yards = 5,280 ft = 1 mile (mi)

•	 Distance – Metric/SI
10 millimeters (mm) = 1 centimeter (cm)
10 centimeters = 1 decimeter (dm)
10 decimeters = 100 centimeters = 1,000 millimeters = 1 meter (m)
10 meters = 1 decameter (dam)
10 decameters = 1 hectometer (hm)
10 hectometers = 1,000 meters = 1 kilometer (km) 

•	 Conversion Between Systems 
1 inch (in) ​=​ 2.540 centimeters (cm)
1 foot (ft) ​=​ 30.480 centimeters (cm)
1 yard (yd) ​≈​ 0.914 meter (m)
1 mile (mi) ​≈​ 1.609 kilometers (km) 

Mass

•	 U.S. Customary 

1 slug = ​​1 lb ___ 
1 ​ ft __ ​s​​ 2​​

 ​​

•	 Metric 
10 milligrams (mg) = 1 centigram (cg)
10 centigrams = 100 milligrams = 1 decigram (dg)
10 decigrams = 100 centigrams = 1,000 milligrams = 1 gram (g)
10 grams = 1 dekagram (dag)
10 dekagrams = 1 hectogram (hg)
10 hectograms = 1,000 grams = 1 kilogram (kg)

•	 Conversion Between Systems 
1 ounce ​≈​ 28.350 grams
1 pound ​≈​ 453.592 grams
1 U.S. ton (called a short ton) ​≈​ 0.907 metric ton 
Note: These ounces are different than the fluid ounces listed under liquid 
capacity. These conversions assume weights as measured on the earth (as 
English units don’t usually measure true mass but just weight). 
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Time 
60 seconds (s) = 1 minute (min)
60 minutes = 1 hour (hr)
24 hours = 1 day (d)
7 days = 1 week (wk) 
365 days = 1 year (yr ​or​ y) 
10 years = 1 decade
100 years = 10 decades = 1 century
1,000 years = 10 centuries = 1 millennium

Temperature

​F =​ Temperature in Fahrenheit ​​(° F)​ = ​9 _ 5​ C + 32​

​C =​ Temperature in Celsius ​​​(° C)​ = ​5 _ 9​​(F − 32)​​​

Weight – U.S. Customary 
16 ounces (oz) = 1 pound (lb)
2,000 pounds = 1 ton (called a short ton) 

Other Units of Measure (See Lesson 2.5 for a reminder on converting 
between some of these units.)
•	 Electrical Charge

C = Coulombs
Charge of an electron = ​− 1.602 × ​10​​ −19​ C​

•	 Electrical Resistance

​Ω = Ohms ​(1 Ω = 1 ​ V __ A​ = 1 ​J • s ___ ​C​​ 2​ ​ )​​ 

•	 Electrical Voltage

​V = Volt ​(1 V = 1 ​ J __ C​)​​ 

•	 Energy

​​1 Joule ​(J)​ = 1 kg • ​​m​​ 2​ __ ​s​​ 2​ ​​​ 

•	 Force
Pounds (lb)
1 Newton (N) = 1 kg • ​​m __ ​s​​ 2​ ​​     
​1 lb ≈ 4.448 N​ 

•	 Frequency
​1 Hertz ​(Hz)​ = 1 ​s​​ −1​​ 

•	 Pressure

​Pa = Pascal ​(1 ​ N __ ​m​​ 2​​ = 1 kg • ​  m _____ ​m​​ 2​ • ​s​​ 2​​ = 1 ​  kg _____ m • ​s​​ 2​​)​​

​1 millimeter of mercury ​(mm Hg)​ ≈ 133.322 Pa​ 
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•	 Power

W = Watt ​​(1 W = 1 ​J _ s ​ = 1 kg • ​​m​​ 2​ __ ​s​​ 3​ ​)​​

​1 Horsepower ​(hp)​ = 745.7 W​ 

Other Reference
Prime Numbers Under 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,  
53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Fundamental Constants/Concepts

•	 ​𝝓​ Phi (the golden ratio) ​= ​(​1 _ 2​ + ​​√ 
_

 5 ​ ___ 2 ​ )​ ≈ 1.61803398875​ 

•	 ​e​ (Euler’s Number) ​≈ 2.718281828459​
•	 ​𝝅​ Pi (the ratio of the circumference of a circle to its diameter) ​≈ 

3.14159265359​ (To calculate, use your calculator’s button or whatever 
rounded value you have memorized.)

Greek Alphabet
​Α, α​ Alpha ​Η, η​ Eta ​Ν, ν​ Nu ​Τ, τ​ Tau
​Β, β​ Beta ​Θ, θ​ Theta ​Ξ, ξ​ Xi ​Υ, υ​ Upsilon
​Γ, γ​ Gamma ​Ι, ι​ Iota ​Ο, ο​ Omicron ​Φ, ϕ​ Phi
​Δ, δ​ Delta ​Κ, κ​ Kappa ​ π,  π​ Pi ​Χ, χ​ Chi
​Ε, ϵ​ Epsilon ​Λ, λ​ Lambda ​Ρ, ρ​ Rho ​Ψ, ψ​ Psi
​Ζ, ζ​ Zeta ​Μ​, ​μ​ Mu ​Σ, σ​ Sigma ​Ω, ω​ Omega
Symbols – Comparison 

​≈​ Approximately equals
​=​ Equals	
​>​ Greater than
​<​ Less than
​≥​ Greater than or equals
​≤​ Less than or equals

Symbols – Sets 
​∈​ Is an element of
​∉​ Is not an element of
​⊂​ Subset of
​∅​	 Empty set
​∩​ Intersection of (think “AND”)
​∪​ Union of (think “OR”)
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Complex Numbers   ​ℂ​
“...numbers of the form 𝑥 + i𝑦, where 𝑥 and 𝑦 are real numbers and i is the imaginary unit 

equal to the square root of – 1, ​​√ 
_

 –1 ​​ . . . complex numbers are useful abstract quantities that can 
be used in calculations and result in physically meaningful solutions.”1 

Real Numbers   ​ℝ​
“The field of all rational and irrational numbers.”2 

Imaginary 
Numbers3   

𝕀
The 

imaginary 
unit  

(i.e., ​​√ 
___

 – 1 ​​ ) 
times some 
real number 
other than 0

Rational Numbers   ℚ
Rational numbers can be expressed as a ratio (i.e., division) of one 

integer to another. {. . . , – ​​1 _ 2​​, –1, –0.3, 0, ​​1 _ 2​​, 0.75, 1, . . .}

Irrational 
Numbers   ℙ

Example: π 
(3.14159265. . .) 

Irrational 
numbers have 
decimal digits 
that go on and 
on for infinity 
without ever 

repeating. 
They cannot 
be expressed 

as a ratio (i.e., 
division) of 

one integer to 
another.

Integers   ​ℤ​
Non-fractional numbers. {. . . , –1, 0, 1, . . .}

Even 
Integers 
{–4, –2, 0,  
2, 4, . . .}

Integers that 
can be divided 

by 2.

Natural (Whole or 
Counting)  

Numbers {1, 2, 3, . . .}   ​ℕ​
Integers 1 and greater.  

(Some definitions include 0.)

Odd  
Integers 
{–3, –1,  

1, 3, . . .}

Integers that 
cannot be 

divided by 2.
Prime Numbers

Whole numbers that 
can’t be evenly divided by 

any whole number but 
themselves and 1.

The prime numbers under 
100 are 2, 3, 5, 7, 11, 13, 17, 

19, 23, 29, 31, 37, 41, 43, 
47, 53, 59, 61, 67, 71, 73, 

79, 83, 89, and 97.

1	 Complex number definition is from Eric Weisstein, “Complex Number,” from MathWorld—A 
Wolfram Web Resource, http://mathworld.wolfram.com/ComplexNumber.html.

2	 Real number definition is from Eric Weisstein, “Real Number,” from MathWorld—A Wolfram Web 
Resource, http://mathworld.wolfram.com/RealNumber.html. 

3	 Imaginary Number definition is based on Merriam-Webster.com Dictionary, (Merriam-Webster),  
s.v. “pure imaginary,” https://www.merriam-webster.com/dictionary/pure%20imaginary. 


