Art of Problem Solving Textbooks
 Do You Know
 Intermediate Algebra

If you can solve nearly all of the following problems with little difficulty, then the Art of Problem Solving text Intermediate Algebra would only serve as a review for you.

1. Solve for real and complex solutions to each of the following equations:
(a) $7 x^{2}-17 x=-101$
(b) $\sqrt{x-5}+\sqrt{x+15}=10$
(c) $\sqrt[3]{x^{2}-1}+\frac{20}{\sqrt[3]{x^{2}-1}}=12$
(d) $x^{6}=1$
2. The sum of the roots to a certain quadratic equation is 20 . The product of the roots is 91 . What are the roots of the quadratic?
3. Find integers x and $y(x>y)$ that satisfy $x+y+x y=223$ and $x^{2} y+x y^{2}=5460$.
4. Simplify this expression: $\sqrt[4]{161-72 \sqrt{5}}$
5. Factor completely $6 x^{8}-25 x^{7}-31 x^{6}+140 x^{5}-6 x^{3}+25 x^{2}+31 x-140$.
6. If a is an integer, what rational numbers could satisfy the equation $6 x^{3}-17 x^{2}+a x=35$?
7. Find integers a, b, and c such that the equation $x^{4}+a x^{3}+b x^{2}+c x+4=0$ has four distinct integer solutions.
8. For $x>0$, find the minimum possible value of $4 x+\frac{9}{x}$.
9. If $x+\frac{1}{x}=5$, find the value of $x^{5}+\frac{1}{x^{5}}$.
10. If $f(n)$ is a second degree polynomial such that $f(0)=7, f(1)=13$, and $f(2)=23$, find $f(3)$.
11. What is the sum of the coefficients in the expansion of $(4 x-2 y)^{8}$?
12. For how many of the first 500 natural numbers, n, will the equation $n=\lfloor 2 x\rfloor+\lfloor 4 x\rfloor+\lfloor 8 x\rfloor+\lfloor 20 x\rfloor$ have solutions?
13. Find (x, y, z) such that
(i) $x+y+z=23$
(ii) $x y+y z+z x=144$
(iii) $x y z=252$
(iv) $x>y>z$

Art of Problem Solving Textbooks
 Do You Know Intermediate Algebra

14. If $P(x)$ denotes a fifth degree polynomial such that $P(k)=\frac{k}{k+1}$ for $k=0,1,2,3,4$, and 5 , determine $P(6)$.
15. Find all functions that satisfy the identity $f(x+5 y)+f(x-5 y)=2 x^{2}+50 y^{2}$.
16. Prove that there is no polynomial $P(x)$ with integer coefficients such that $P(1)=2, P(2)=3$, and $P(3)=1$.

The answers to Do You Know Algebra 3 are below.

1. (a) $\frac{17 \pm i \sqrt{2539}}{14}$
(b) 21
(c) $\pm 3, \pm \sqrt{1001}$
(d) $\pm 1, \frac{1 \pm i \sqrt{3}}{2}, \frac{-1 \pm i \sqrt{3}}{2}$
2. 7 and 13
3. $x=15, y=13$
4. $\sqrt{5}-2$
5. $(x-1)(x-4)(2 x-5)(3 x+7)\left(x^{4}+x^{3}+x^{2}+x+1\right)$ (Yes, there is a faster way than just plowing ahead with synthetic division.)
6. The 32 possible rational roots are all in the form $\pm \frac{m}{n}$ where m takes on each of the values 1 , 5,7 , and 35 , and where n takes on each of the values $1,2,3$, and 6 .
7. $a=0, b=-5$, and $c=0$
8. 12
9. 2525
10. 37
11. 256
12. 353
13. $(14,6,3)$
14. 1
15. $f(x)=x^{2}$
16. Consider the general polynomial $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$. Notice that $P(r)-P(s)=$ $a_{1}(r-s)+a_{2}\left(r^{2}-s^{2}\right)+\ldots+a_{n}\left(r^{n}-s^{n}\right)=(r-s) Q(r, s)$ for some integer $Q(r, s)$. This means that $2-3=P(1)-P(2)=-Q(1,2), 3-1=P(2)-P(3)=-Q(2,3)$, and $1-2=P(3)-P(1)=2 Q(3,1)$. This gives a non-integer $Q(3,1)$, which is a contradiction; thus, no such polynomial $P(x)$ exists.
