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Chapter 15

Area

In earlier chapters we discussed how to find the areas of simple figures like circles and triangles. In
this chapter, we learn how to find the area of more complex figures and of simple figures in complex
problems.

15.1 Similar Figures

On page 109, we showed that if two triangles are similar and their sides have common ratio k, the
ratio of their areas is k. This is true of any two similar figures. For example, since all circles are
similar, if one has a radius which is twice as large as another, its area is 4 times as large as the second.
Thus, when working on a problem in which you are able to prove that two figures are similar, you
can easily relate the areas of the figures.

EXAMPLE 15-1 The area of a triangle is 36. Find the area of the triangle formed by connecting the
midpoints of its sides.

Solution: We first prove that any triangle is similar to the triangle formed A
by connecting the midpoints of its sides. In the figure, since E and F are
midpoints, we have AE/AC = AF/AB = 1/2. Since /EAF = /CAB, we have F E
ACAB ~ AEAF from SAS Similarity. Hence EF/CB = 1/2. Similarly, we can
show FD/AC = 1/2 and ED/AB = 1/2. Thus, by SSS Similarity, we have B
AABC ~ ADEF. Thus,

)

[ABC] ~ \2
Hence [DEF] = [ABC]/4 = 9.

EXAMPLE 15-2 The ratio of the areas of two squares is 6. Find the ratio of the lengths of the
diagonals of the two squares.

Solution: Like circles, all squares are similar. Thus, the ratio of the areas is the square of
the ratio of any corresponding lengths of the figures. Hence, the ratio of the lengths of the diagonals

is the square root of the ratios of the areas, or ve.
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EXAMPLE 15-3 In trapezoid ABCD, AB || CD and the diagonals meet at E. If AB = 4 and CD = 12,
show that the area of ACDE is 9 times the area of AABE.

Proof: First, since AB || CD, we have /BAE = /DCE and /ABE = /CDE as A B
shown. Thus, by AA Similarity we get AABE ~ ACDE. Since CD/AB = 3, we 7
find [CDE]/[ABE] = (CD/AB)? = 9.
D C

15.2 Same Base/Same Altitude

If two triangles with the same altitude have different bases, the ratio of their areas is just the ratio of
their bases. The proof of this is quite straightforward. Given AABC and ADEF where the altitudes
h, and h,; to BC and EF, respectively, of the triangles are equal, we have
(BO)ha _ (EBhy

> and |[DEF] = y

[ABC] =

Thus
[ABC] _ (BC)h,/2 E@ _BC

[DEF] ~ (EF)hy/2  EFhy; EF’

Similarly, we can show that if two triangles have the same base, the ratio of their areas is the
ratio of their altitudes. (Try it.) As you will see in the examples, these facts are often used when the
equal bases in question are actually the same segment, not just the same length. This approach is
also often used to show that two triangles have the same area. If the triangles have the same base
(or altitude), we can show they have the same area by showing that their altitudes (or bases) have
the same length.

EXAMPLE 15-4 Show that by drawing the three medians of a triangle, we divide the triangle into
six regions of equal area.

Proof: First, we will show that [ACD] = [ABC]/2. These two A
triangles have the same altitude from A, so the ratio of their areas is
the ratio of the bases CD and CB. Since D is the midpoint of BC, we E F
have CD/CB = 1/2. Thus, [ACD]/[ABC] = 1/2.

Now, we show that [GCD] = [ACD]/3. Since GD and AD are
on the same line, triangles GCD and ACD have the same altitude c D B
from C. Thus the ratio of their areas is GD/AD. Since G is the centroid, we have from page 94 that
GD/AD =1/3. Thus

[ACD] _[ABC]/2 _ [ABC]

3 3 6
Similarly, we can show that each of the other 5 smaller triangles formed by drawing all the medians
have area [ABC]/6. Thus, the three medians divide a triangle into 6 sections of equal area.

EXAMPLE 15-5 In AABC, D is the midpoint of AB, E is the midpoint of DB, and F is the midpoint
of BC. If the area of AABC is 96, then find the area of AAEF. (AHSME 1976)

[GCD] =
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Solution: Since AABF has the same altitude as AABC and % the base, it has A
% the area of AABC. Thus, [ABF] = [ABC]/2 = 48. Now, AAEF has the same
altitude (from F) as AABF. The base of AAEF is 3 that of AABF (AE = 3AB), D E
so [AEF] = 2[ABF] = 36.
C F B

EXAMPLE 15-6 Line [ is parallel to segment AB. Show that for all points X on /, [ABX] is the same.

Proof: No matter where X is on [, the altitude from X to AB is the same. Since AB is obvi-
ously always constant, the area of AABX is constant.

EXAMPLE 15-7 If the diagonal AC of quadrilateral ABCD divides the diagonal BD into two equal
segments, prove that [ACD] = [ACB]. (M&IQ 1992)

Proof: As described in the problem, X, the intersection of the diagonals, A
is the midpoint of BD. Since AACD and AABC share base AC, we can prove
the areas of the triangles are equal if we show that the altitudes of the B
triangles to this segment are equal. Thus, we draw altitudes BY and DZ. D
Since DX = BX and /DXZ = /BXY, we have ADZX = ABYX by SA for right
triangles, so DZ = BY. Hence, [ABC] = (AC)(BY)/2 = (AC)(DZ)/2 = [ABD].

15.3 Complicated Figures

Sometimes it is easiest to find the area of a figure by breaking it up into smaller pieces, like triangles
or sectors, of which the area can easily be found. Problems involving parts of circles together with
other geometric shapes can often be solved this way. Areas of complex polygons can often be found
by breaking the polygon into rectangles and triangles. A few tips will help solve these problems.

> Draw radii to separate sectors and circular segments from the rest of the diagram. Find the
area of these regions, then the area of the rest of the figure.

> Look out for right and equilateral triangles. Draw additional sides to separate these triangles
from the remainder of the problem. This often makes the method of finding the area of the rest
of the figure clear.

> Draw diagonals of quadrilaterals to split the quadrilaterals into two triangles whose areas can
be easily found.

EXAMPLE 15-8 Find the area between the two concentric circles shown if the circles
have radii 2 and 3.

Solution: None of the simple formulas we have learned so far can give us the
area of this figure; however, we do know how to find the area of a circle. The larger
circle has area 97 and is the sum of the smaller circle and the shaded area. The smaller
circle has area 47, and the sum of the small circle and the shaded area is the area of the larger circle.
Thus, the shaded region has area 9m — 47t = 5n. The shaded region is called an annulus.
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EXAMPLE 15-9 Find the area of a regular octagon with side length 2.

Solution: We can form a regular octagon by cutting the corners out of a square, like A B
AABC shown. (Prove this yourself.) Since BC = 2, wehave AB = 2/ V2 = /2. Thus, the C
length of one side of the square is 2+2 V2 and the square has area (2+2 V2)? = 12+8 V2.
Each of the corners has area (V2)2/2 = 1, so the octagon has area (12 + 8 V2) —4(1) =

8 +8 V2.

EXAMPLE 15-10 Find the shaded area, given that AABC is an isosceles right
triangle. The midpoint of AB is the center of semicircle AB, point C is the center A
of quarter circle AB, and AB =2 V2. (MAG 1990)

Solution: What simple areas can we find in this figure? Since AB =22 and
ABCis anisosceles right triangle, we have AC = CB = 2and [ABC] = (2)(2)/2 = 2.
We can also find the area of sector ABC and the semicircle with diameter AB. The area of quarter
circle ABC is 1/4 that of the circle with radius BC. Thus, it has area (22)t/4 = . The semicircle is
half the area of the circle with diameter AB, or (V2)?11/2 = 7. How can we combine these pieces
to get the shaded area? This is where these problems become like puzzles. We are given three
pieces, the triangle, the semicircle, and the quarter circle, which we must add or subtract to form the
shaded region. This requires some intuition and practice. Here, we add together the triangle and
the semicircle, then subtract the quarter circle to leave the shaded region. Make sure you see this.
Thus, the desired area is 7 + 2 — = 2. This is how we do all problems of this sort. We find the
area of the simple figures in the diagram and determine how these figures can be added together or
subtracted from each other to find the desired (usually ‘shaded’) region.

EXAMPLE 15-11 Given the square in the figure with side length 4 and four
semicircles which have the sides of the square as their diameters as shown, find the
area of the ‘leaves’ which are shaded in the diagram.

Solution: The simple figures we have here are 4 semicircles and a square. The
desired area is the region where semicircles overlap. Hence, we note that by adding
together the areas of the four semicircles, we exceed the area of the square by the total area of the
desired region. (Make sure you see this; it is because each ‘leaf” is in two of the semicircles.) This
is somewhat similar to our discussion of overcounting on page 229. We are ‘overcounting’ the area
covered by the semicircles by twice counting the amount of area in the shaded regions. Hence, the
area of the desired region is the total area of the four semicircles minus the area of the square, or
4(2%1/2) — 4% = 81 — 16.

EXAMPLE 15-12 Each of the circles shown has a radius of 6 cm. The
three outer circles have centers that are equally spaced on the original
circle. Find the area, in square centimeters, of the sum of the three
regions which are common to three of the four circles. (MATHCOUNTS
1992)

Solution: Our pieces in this problem are four circles which we unfortu-
nately cannot puzzle together to make the desired region as we have done
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