Llie of Gried
OAduanced OAlgebra

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

OWhat's in OAduanced OAlgebra?

A
11 kinds of stuff. It's the second half of algebra. You've seen the first half, and therefore, things like $2 \mathrm{x}=14$ are not very scary anymore. In beginning algebra we've already done most of the classic word problems such as ...

JENNIFER CAN DIG A DITCH IN 4 HOURS.
JASON CAN DIG IT IN 5 HOURS. IF THEY WORK TOGETHER HOW LONG WILL IT TAKE?
or
JASON RUNS DOWN THE HALL AT 5 MPH. WHEN HE'S 50 FEET AWAY, JENNIFER RUNS after him at 6 MPH. HOW LONG before THEY'RE HAPPY?

We've already learned 94.7% of factoring. The only thing left is the factoring of $\mathrm{x}^{3}+\mathrm{y}^{3}$, which is $=(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}\right)$. Oops! I guess you've just finished factoring.

You've gone through the agony of learning to add and multiply algebraic fractions:

and the terror of the quadratic formula: $x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$
The further you go in math, the less memorizing and the less computational cookbook stuff you encounter. You will find that understanding rather than just being a good tape recorder starts to matter most.

In Fred's everyday life in this book, he runs into things that would baffle a beginning algebra student. For example, in chapter three you learn how to solve $2^{x}=5$. In chapter six you learn how to battle the dreaded Snow King using a Waddle-Ray which can be obtained at your local doughnut store. In chapter nine we add up an infinite number of numbers, such as $1 / 2+1 / 6+1 / 18+1 / 54+\ldots$, and we get an answer! A finite answer. Not your usual old stuff.

OA ONote to Students

工i! This is going to be fun.

Fred and you are both veterans. He has just received an honorable discharge from the army and is taking the bus home to KITTENS University in Kansas. You are a veteran of beginning algebra. You are about to join him on that bus ride.

On the two-day ride you will experience all of advanced algebra-everything you need to know for trigonometry, for calculus, and for the rest of your life. You will have it all.

The supplies you'll need for the trip:

1. pencil or pen
2. paper
3. one of those basic handheld calculators that has,,$+- \times, \div$, and $\sqrt{ }$ keys. Last time I checked, the fancier solar models (that don't require a battery) cost about $\$ 5$.

It would be nice, but it's not required, to have one of the fancier handheld calculators (often called a scientific calculator) that has the keys: $\sin , \cos , \log , \Sigma$, and y^{x}. You will be able to use it occasionally in this book, but owning one won't be mandatory until the next course which is trigonometry. And that will be the last calculator that you'll ever need to get. When you get to calculus, which is right after trigonometry, you won't need to get any more machines.

When I studied algebra, my teacher told the class that we could reasonably expect to spend thirty minutes per page to master the material in the old algebra book we used. With the book you are holding, you will need two reading speeds: thirty minutes per page when you're learning algebra and whatever speed feels good when you're enjoying the life adventures of Fred.

Throughout the book are sections called Gour Gurn la Play, which are opportunities for you to interact with the material. That's what the supplies listed on the previous page are used for. Just reading the problems and the solutions that are furnished doesn't work. Answers are supplied to half of the questions in the Cities section at the end of each chapter.

The general rule is easy: All of the Gour Guinta Play and the half of the Cities questions that have the answers supplied are yours to tackle.

Our story begins at noon on Monday. Start on page one and things will explain themselves nicely.

After 10 chapters you will have mastered all of advanced algebra.

Just before the Index (starting on p. 308) the A.R.T. section begins. (A.R.T. = All Reorganized Together)

This section very briefly summarizes advanced algebra. If you have to review for a final exam or you want to quickly look up some topic eleven years after you've read this book, the A.R.T. section is the place to go.

Contents

Chapter 1 Ratio, Proportion, and Variation 16
median average cross multiplying constant of proportionality
Chapter 1½ Looking Back 38
exponents
square roots
rationalizing the denominator
Chapter 2 Radicals 43
radical equations extraneous answers
The History of Mathematics-a story irrational numbers
imaginary numbers
Chapter 2½ Looking Back 70
Venn Diagrams disjoint sets union intersection
significant digits scientific notation
Chapter 3 Logarithms 82
exponential equations
the laws of logs three definitions of logarithm
Chapter 3½ Looking Back 110
graphing by point-plotting ordered pairs, abscissa, ordinate, origin, quadrants
Chapter 4 Graphing 116slopedistance between pointsslope-intercept form of the linedouble-intercept form of the linepoint-slope form of the linetwo-point form of the lineslopes of perpendicular lines
Chapter 4½ Looking Back 135factoring
common factors
easy trinomials (of the form $x^{2}+b x+c$)
difference of squares
grouping
harder trinomials (of the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$)
fractions
simplifying
adding, subtracting
multiplying, dividing
complex fractions
equations
linear
fractional
quadratic
by factoring
pure quadratics
the quadratic formula
radical equations
Chapter 5 Systems of Equations 147
solving by elimination solving by substitution solving by graphing inconsistent and dependent systems solving by Cramer's rule expanding determinants by minors
Chapter 6 Conics 172
ellipse
major and minor axes vertices and foci reflective property

 circle

 parabola

 hyperbola

 graphing inequalities in two variables

 conic sections not centered at the origin
 Chapter 7 Functions 201definitiondomain, codomain, range, image
1-1, onto, 1-1 correspondence
inverse functions
relations
identity function
Chapter 7½ Looking Back 237long division of polynomials
Chapter 8 Linear Programming, Partial Fractions, and Math Induction 241
the four cases for partial fractions numerals vs. numbers
very large numbers
Chapter 9 Sequences, Series, and Matrices 268
arithmetic
last term formula

 sum

 matrix addition and multiplication

 geometric

 last term

 sum of finite series

 sum of infinite series

 sigma notation
 Chapter 10 Permutations and Combinations 284
the fundamental principle factorial $\mathrm{P}(\mathrm{n}, \mathrm{r})$ $\mathrm{C}(\mathrm{n}, \mathrm{r})$ permutations where some of the items are identical binomial formula
Pascal's triangle
Combinatorially Yours 307
the hardest problem in advanced algebra
A.R.T. (All Reorganized Together) section 308
a quick summary of all of advanced algebra
Index 317

Chapter One

Patio. Propartion, and Cariation

Fred looked out the bus window. The cold, white Texas landscape might have seemed bleak to many people, but to him it was a joy. He was heading north-back to his home in Kansas.
He thought about the last four days. Friday had been his sixth birthday. So much had happened since then: his "abduction" into the army, all the new friends he had met, his hurt rib, and his honorable discharge.*

Now he could look out at the passing telephone poles and just imagine them as a clock ticking away the six hours till he reached his office at KITTENS University (Kansas Institute for Teaching Technology, Engineering and Natural Sciences), where he has lived for the last five years.

It would be good to get out of his hospital nightshirt with the little blue and green frogs all over it. Tomorrow would be Tuesday and maybe by then his rib wouldn't hurt so badly. With a good night's sleep and a fresh bunch of clothes, he'd meet his 9 A.m. trigonometry class.

The telephone poles whooshed by, one after another. He looked out of the bus window and unconsciously began to count them: five poles passed for every three beats of his heart. (He could feel his pulse as little stings in his hurt rib.) The ratio of the passing poles to the heartbeats was $5: 3$. Ratio means division, so $5: 3$ could also be written as $5 \div 3$.

His eyes began to close, shutting out the snowy scene. A little nap would help pass the time. Five-thirds would become ten-sixths would become fifteen-ninths. He'd soon be asleep.
"Hey! How old are you?"
Fred was startled by the half-shouted question. He received a little poke in the ribs and then he was fully awake.
"I said how old are you," the little girl repeated.
"I'm six. I just turned six last Friday."
She said, "Oh" and ran to her friends in the back of the bus. They were all about four years old and were all dressed identically in gray-brown dresses. They giggled and chattered.

[^0]Fred might easily have been mistaken for a four-year-old. He had always been less than the median weight for his age. (The median weight means that half the people are heavier and half the people are lighter than that weight. The median is one of the three kinds of averages studied in beginning statistics.) Fred, at 37 pounds, was definitely less than the median weight for his age. Maybe only 4% of boys his age weighed less than he did.

He noticed that the ratio of the telephone poles that the bus was passing to his pulse was now 5:4. It wasn't that the bus was going faster, but simply that his heart was beating more quickly. Getting awakened with a question and a poke would cause most people's hearts to beat faster.

Oh well, he thought, and after a few moments he began to drift back to sleep.

He could hear her coming. Some little girl running up the aisle to his seat. It was a different girl than the first one. Instinctively, he put his arms around his ribs to protect them against further assault.
"What's your name?" she blurted. She had been sent on a mission to find this out.

Fred, who had read all the James Bond books, thought of answering, "Gauss, Fred Gauss," but instead he simply said, "Fred."
"Oh" was her only response, and she ran to the back
 of the bus to report her findings to her girlfriends.

Fred was so used to being around the students at KITTENS that these four-year-olds seemed to him to be so . . . he couldn't think of the word. They seemed to be so immature.

A woman, also wearing one of the gray-brown uniform dresses, came up to Fred and smiled. "Hi. My name is Cheryl Mittens. I hope my little girls haven't been bothering you."
'Not too much. Could you tell me what's going on? Are they just playing or something?"
"Well, you might call it that," Cheryl said. "They're working on earning a badge for their uniforms. It's the How-to-Find-a-Husband badge. The first requirement is to learn to make contact with some fellow that they want to get to know."
"Oh," said Fred. (He was starting to sound like the girls.) "But I'm 50% older than these girls. (He had done the math in his head: $4 \times 1.50=6$.) Aren't they supposed to pick a guy that's close to themselves in age? I read in a marriage manual, Professor Eldwood's Treatise on Modern Courtship and Marriage, 1846, that the prospective bride should be at least 90% of the age of the groom. That would make the ratio of their ages 9:10. Right now, the ratio of their ages to mine is 4:6."

Cheryl laughed. "I guess you're right. The girls are only playing at getting married right now. Don't worry. They'll never be 90% of your age."

Fred's heart raced at the thought of marriage to one of those children. Maybe he'd be lucky and he'd be a hundred years old before they were grown up enough to be of the appropriate age. Then he wondered how long it really would be before they were 90% of his age-before the ratio of their ages to his age was $9: 10$. He let x equal the number of years from now until that happened. In x years, the girls would be $4+x$ years old and he would be $6+x$ years old. In x years, the ratio $4+\mathrm{x}: 6+\mathrm{x}$ would be the same as $9: 10$.

$$
\frac{4+x}{6+x}=\frac{9}{10}
$$

Two ratios set equal to each other is called a proportion. When we solved fractional equations in beginning algebra, we found an expression that all the denominators would evenly divide into and multiplied every term by that expression. In this case $10(6+x)$ will do the trick:

$$
\frac{(4+x) \mathbf{1 0 (6 + x)}}{6+x}=\frac{9 \cdot \mathbf{1 0 (6 + x})}{10}
$$

Then all the denominators
disappear $\quad(4+x) 10=9(6+x)$
Multiply it out using the distributive property

$$
40+10 x=54+9 x
$$

Subtract 9x from
each side

$$
40+x=54
$$

Subtract 40 from each side $\quad \mathrm{x}=14$

a.R.

All Reorganized Together

A Suner-condenged and Reoraganized-hy-Ionic fuverview ofAduanced Alogebia
 (Highly abbreviated)

Topics:

Conics
Factoring
Fractions
Functions
Graphing
Imaginary Numbers
Linear Programming
Logs
Math Induction
Matrices
Partial Fractions
Pascal's Triangle
Permutations \& Combinations
Radical Equations
Ratios \& Proportions
Sequences and Series
Significant Digits
Systems of Equations

Conics

Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

The larger of a or b is called the semi-major axis. The other one is called the semi-minor axis.
(p. 173 and p. 195)

Factoring

$$
\begin{align*}
& (a+b)(c+d)=a c+a d+b c+b d \tag{p.135}\\
& \quad \text { memory aid: boys and girls dating } \tag{p.136}
\end{align*}
$$

Common factor: $4 x^{2} y-6 x y=2 x y(x-3)$
Easy trinomials: $x^{2}+5 x+6=(x+2)(x+3)$

Difference of squares: $49 \mathrm{x}^{2}-25 \mathrm{y}^{2}=(7 \mathrm{x}+5 \mathrm{y})(7 \mathrm{x}-5 \mathrm{y}) \quad(\mathrm{p} .137)$
Grouping: $\quad 6 x^{3}-15 x^{2}+4 x-10$
$=3 x^{2}(2 x-5)+2(2 x-5)$
$=(2 x-5)\left(3 x^{2}+2\right)$
Harder trinomials: $6 x^{2}+29 x+35$
Split the 29 x into two numbers that add to 29 x and multiply to $\left(6 x^{2}\right)(35)$

$$
6 x^{2}+15 x+14 x+35
$$

and finish the factoring by grouping

$$
\begin{aligned}
& 3 x(2 x+5)+7(2 x+5) \\
& (2 x+5)(3 x+7)
\end{aligned}
$$

Fractions

Adding fractions, see p. 141.
Subtracting fractions, see p. 142.
Multiplying fractions, see p. 142.
Dividing fractions, see p. 143.
Solving fractional equations:

$$
\begin{equation*}
\frac{1}{12}+\frac{1}{16}+\frac{1}{24}=\frac{1}{x} \tag{p.144}
\end{equation*}
$$

Multiplying by $48 x$ to clear
all the denominators $\frac{1 \cdot \mathbf{4 8 x}}{12}+\frac{1 \cdot \mathbf{4 8 x}}{16}+\frac{1 \cdot \mathbf{4 8 x}}{24}=\frac{1 \cdot \mathbf{4 8 x}}{\mathrm{x}}$
which simplifies to $4 \mathrm{x}+3 \mathrm{x}+2 \mathrm{x}=48$
If you multiply an equation by an expression containing variables, you must check your answers in the original problem to eliminate extraneous roots.

Functions

A function is any rule which assigns to each element of the domain exactly one element of the codomain.
(p. 204)

1-1 functions (one-to-one functions) are those functions where no two elements in the domain have the same image. (p. 212)
The range of a function is the set of all the images. It is a subset of the codomain of the function.
(p. 227, problem 5)

If f is a $1-1$ function, we may create an inverse function f^{-1}. The inverse function maps the elements in the range of f back to the domain of f so that $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$ for all x in the domain.
(p. 212)

A function is onto the codomain if every element of the codomain is the image of at least one element in the domain. (p. 224)
Functions that are both 1-1 and onto are called 1-1 correspondences. The domain and codomain of such functions must have the same number of elements. (p. 228)
A function may also be defined as a set of ordered pairs in which no two ordered pairs have the same first coordinate. If the ordered pairs of a function are graphed, no two points on the graph will be directly over each other. Any set of ordered pairs is called a relation.
(pp. 230-232)
An identity function is a function where the domain equals the codomain and each element of the domain is mapped to itself. $f(x)=x \quad$ (p. 232, problem 3)
$f: A \rightarrow B$ means the name of the function is f, the domain is A and the codomain is B .
(p. 210)

Graphing

first coordinate $=x$ coordinate $=$ abscissa
second coordinate $=y$ coordinate $=$ ordinate
$(0,0)=$ origin

The four quadrants:	II	I
	III	IV

Slope $=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=$

$$
\begin{equation*}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{p.123}
\end{equation*}
$$

Slope-intercept form of the line $y=m x+b$
Double-intercept form $x / a+y / b=1$
Point-slope form $m=\frac{y-y_{1-}}{x-x_{1}}$
Two-point form of the line $\frac{y-y_{1-}}{x-x_{1}}=\frac{y_{2}-y_{1-}}{x_{2}-x_{1}}$
Two lines are perpendicular iff their slopes are negative reciprocals of each other.
Inequalities

Ondex

abscissa 115
absolute value 113, 213
approximately equal \approx 51
Argand diagram 62, 70
arithmetic series (progression)
a, $1, \mathrm{~d}, \mathrm{n}, \mathrm{s}$ 270
finding 1 271
finding s 27
big numbers 257
binomial formula 300
Cantor, Georg 63
circle 178
cleaning your computer 22
combination 292
formula 293
common factor 136
completing the square 194
complex number plane 62
complex numbers 62, 74
conic sections 196
constant of proportionality 22
constant of variation 22
constellations (the 88 official ones)125
cross multiplying 19
degree of a polynomial 237
dependent variable 127
determinants
evaluating 2×2 59
evaluating 3×3 160
expanding by minors 161
difference of squares factoring 137
distance between two points 122
double-intercept form of the line 123
ellipse
foci 181
major axis 198
reflective property 184
semi-major axis 173
semi-minor axis 173
standard form 195
vertex 173
equations
fractional 144
general quadratic 145
linear 144
pure quadratic 144
quadratic by factoring 144
quadratic formula 145
radical equations 145
radical equations with two radicals
. 146
exponential equation 84
exponents 39, 40
extraneous answers 46, 47
factorial 287
0 ! 287
gamma function 287
factoring
common factor 136
difference of squares 137
easy trinomials 136
grouping 138
harder trinomials 138
multiplying binomials 135
fifty-foot tall Rita 30-33
fractions
adding 141
complex fractions 143
dividing 143
multiplying 142
partial fractions 243
simplifying 140
subtracting 142
function
1-1 212
1-1 correspondence 228
as a graph 232
as ordered pairs 230
codomain 204
definition 204
domain 204
$\mathrm{f}(\mathrm{x})$ notation 211
identity function 232
image 205
inverse 212
onto 224
pre-image 227
range 227
relation 231
fundamental principle 285
geometric progression 277
finding s 278, 279
finding sum of an infinite geometric
progression 281
geometric sequence 277
finding the last term 277
Gormenghast Trilogy 266
graphing
abscissa 115
inequalities 192, 193
ordered pair 114
ordered triple 114
ordinate 115
origin 115
plane in three dimensions 155
quadrants 115
grouping factoring 138
harmonic progression 282
hyperbola 189
asymptotes 189
standard form 197
imaginary numbers 61
complex numbers 62
pure imaginary 62, 74
independent variable 127
integers 54, 74
irony 84
irrational numbers 60
Kilmer, Joyce 128
lateral surface area of a cone 50
linear programming
constraints 258
objective function 265
the second step after graphing the
constraints 261
lines--all the formulas 131
$\log \mathrm{S}$
antilog 97
change-of-base rule 104
common logs 101
first definition 101
power rule (birdie rule) 86
product rule 92
quotient rule 93
second definition 102
third definition 105
long division of polynomials 237-240
MacDonald, Jeanette 236
math induction 253-256
matrix 273
adding 274
dimension 281
entry 274
multiplying 275
rows and columns 274
median average 17, 34
metonymy 83
natural numbers 53, 74
Newton's first law 29
numbers vs. numerals 249
Omar Khayyam 176
onomatopoeia 284
ordered pair 114
ordinate 115
origin 115
parabola 186
vertex 187
Pascal, Blaise 302
Pascal's triangle
binomial formula 298
chart 300
coin tosses 299
entries are $C(n, r)$ 297
perimeter of a triangle 46
permutation 289
formula 290
with some items alike 293, 294
point-plotting 110
point-slope form of the line 126
proportion 18
cross multiplying 19
pure quadratic 50
Pythagoras 57
Pythagorean theorem 42
quadrants 115
quadratic equations
by factoring 144
pure 144
quadratic formula 145
radical equation 45
how to solve 47
ratio 16
rational numbers 55, 74
real numbers 60, 74
reciprocal 282
relation 231
Russell, Bertrand 224
scientific notation 78
sector 216
sigma notation 279
dummy variable 282
significant digits 75-79
in computing 79
slope . 117
of perpendicular lines 130, 131
slope-intercept form of a line 123
square roots 41
rationalizing the denominator 41
subscripts 120
systems of equations
Cramer's rule 156
dependent 151
determinant 156
inconsistent 151
solved by elimination 149
solved by graphing 149
solved by substitution 149
tachyon 63
tax on sleeping and eating 170
transfinite numbers 229
two-point form of the line 128
unit analysis 64
variation
constant of proportionality 22
constant of variation 22
Venn Diagrams 70-74, 296
intersection 71
subset 72
union 71
vertex of a parabola 187
whole numbers 74

[^0]: * This story is told in Life of Fred: Beginning Algebra

