

4 Find the greatest common factor of each set of numbers.

-		
18, 24, and 36	14, 35, and 42	20, 32, and 36
5 Simplify.		
$43.2 \times 10^0 =$	$0.063 \times 10^{\circ} =$	$2.7 \div 10^{\circ} =$
$0.871 \times 10^{-1} =$	$27.96 \times 10^{1} =$	$66.49 \div 10^1 =$
$6.492 \times 10^{-2} =$	$3.18 \div 10^2 =$	$31.45 \div 10^2 =$
$0.5 \times 10^{-3} =$	$549.618 \div 10^3 =$	$0.088 \div 10^3 =$

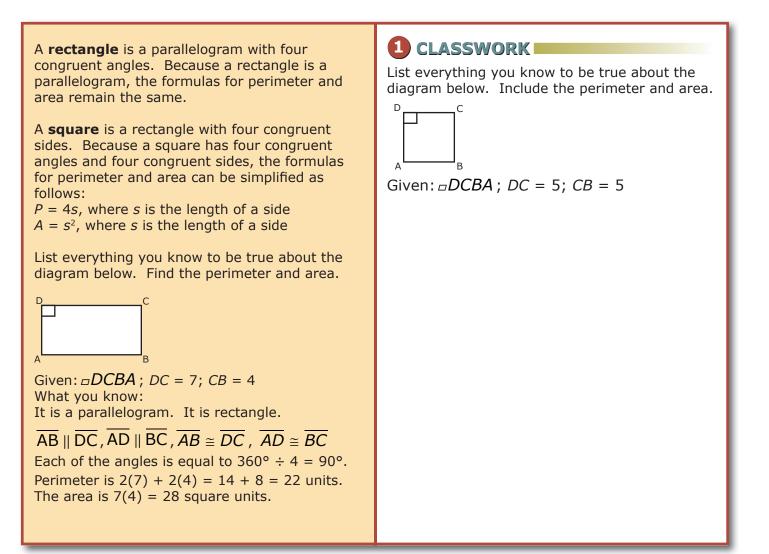
6 Solve the word problems. Remember to label your answers.

8 cups flour	8 tablespoons butter
5 teaspoons baking powder	8 tablespoons shortening
1 teaspoon baking soda	4 cups buttermilk, chilled

Diann is cooking for 192 people at church on Wednesday night. How much of each ingredient does Diann need to serve one biscuit to each person?

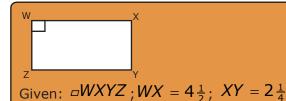
A 5-pound bag of flour contains about 20 cups of flour. How many 5-pound bags of flour must Diann purchase to ensure she has enough flour to bake biscuits for 192 people?

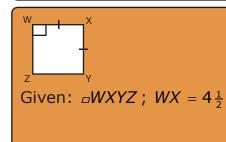
1. The aerial bucket ride at an amusement park allows a maximum of 8 park guests to exit or board at each stop. The chart below shows how many guests boarded and exited the bucket ride in each of the first 5 stops. If there were 38 guests on the ride at the start, how many were on the ride after the 5th stop?

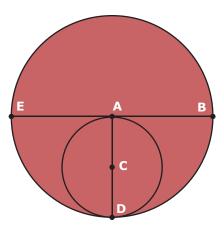

Stop	Α	В	С	D	E
Boarded	6	4	7	8	8
Exited	2	8	5	4	3

A. 10

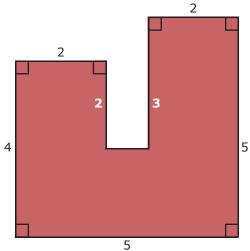
- B. 16
- C. 34
- D.38
- E. 49
- 2. Given x + 3 = 7 and y + 12 = 20, what is the value of x + y?
 - A. 4
 - B. 8
 - C. 12
 - D. 32
 - E. 42
- 3. In a football game, a touchdown with an extra point is worth a total of 7 points. A field goal is worth 3 points. If a team has 23 points, how many field goals have they scored? (Assume all extra points were made and no safeties or 2-point conversions were scored.)
 - A. 1
 - B. 2
 - C. 3
 - D.4
 - E. 5
- 4. Given *x* is the square of an integer and a multiple of 9 and 18, find the value of *x*.
 - A. 3
 - B. 6
 - C. 9
 - D.18
 - E. 36




Rectangles and Squares



ACTIVITIES


2 List everything you know to be true about the diagrams below. Include the perimeter and area.

- 1. In the figure above, A is the center of the large circle and C is the center of the small circle. If CD = 3, what is the length of \overline{EB} ?
 - A. 6
 - B. 9
 - C. 12 D. 15
 - E. 18

- 2. What is the area of the figure above? A. 20
 - A. 20
 - B. 22 C. 23
 - C. 23 D. 24
 - E. 25

- What is your occupation? I am a registered nurse and missionary wife.
- Where do you work? I work in Soroti, Uganda. I am the mother of three. I am also the nurse for 30 orphans at the Soroti Orphan Assistance project (S.O.A.P) orphanage.
- Did you attend college? If so, what was your major? Yes, I have a B.S. degree in nursing.

What parts of your job require the use of

math? The recipes that I use have the oven temperatures in degrees Fahrenheit while the ovens I use are in Celsius. I need to convert the oven temperatures from Fahrenheit to Celsius. I also use math to calculate the medication dosages for children.

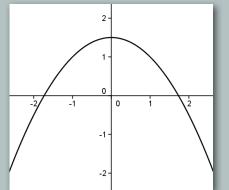
What is the biggest "problem" you have faced that required the use of

- **math to solve?** When a child needs medicine, I need to convert the dosages of the medication for that specific child.
- Are there any other interesting math uses you have experienced? I use math to determine how much flour, sugar, etc. I need to buy to make various recipes. I also need to keep within a grocery shopping budget. This is difficult because I don't know the value of the dollar until I arrive in the capital city. When I get there, I buy groceries for the next two months. I need to determine how many kilos of ground beef I will need for two months of dinners.

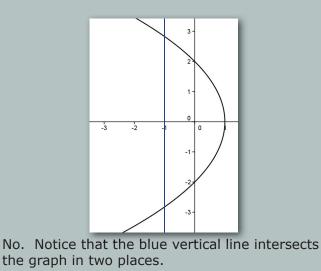
Functions and Graphs

A **function** is an equation in which each value of the independent variable has exactly one corresponding value of the dependent variable.

The values assigned to the independent variable are called the **domain**.

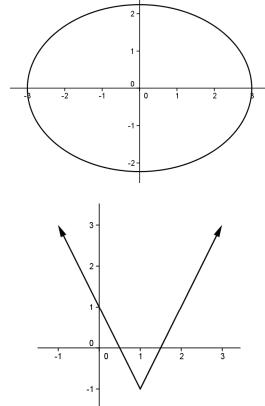

The corresponding values of the dependent variable are called the **range**.

A function is written in the format f(x) and is read, "the function f of x," or, "the f of x."


When graphing a function, the f(x) side of the equation corresponds to the y portion of an equation. Plot points as usual and graph.

To look at a graph and instantly determine whether or not the graph is a function, use the **vertical line test**. If you can draw a vertical line on the graph and cross the graph in two or more points, the graph is not a function. Otherwise, the graph is a function.

Tell whether or not each graph is a function.



Yes. There is no way to draw a vertical line that intersects the graph in more than one point.

Tell whether or not each graph is a function.

1) CLASSWORK

Graph the function f(x) = 2x - 1.

Review

ACTIVITIES

1 Find the area of each base, and the volume of a prism having the indicated height.)

Base of Prism	Area of Base	Prism Height	Volume of Prism
$3\frac{1}{3}$ in. $1\frac{3}{4}$ in.		3 <u>3</u> in.	
2.1 cm 2.1 cm		2.1 cm	
3√2ft. 2√2ft. □ 4√2ft.		4√3 ft.	
4.3m 6.1m 10.2m		7.03 m	
$2\sqrt{3}yd.$ $2\sqrt{6}yd.$ $2\sqrt{15}yd.$ $2\sqrt{3}yd.$ $2\sqrt{3}yd.$ $2\sqrt{3}yd.$		5√2 yd.	

2 Complete the chart for cones.	2	Complete	the	chart	for	cones.	
---------------------------------	---	----------	-----	-------	-----	--------	--

Radius	Height	Slant Height	Volume	Lateral Area	Surface Area
5.2 in.	1.8 in.	1.8 in.			
6 m	8 m	10 m			