LIFFEPAC Math

Contents

I. Addition Facts to 18 2
II. Skip Counting, Even and Odd Numbers 9
III. Numbers as Words, Place Value 16
IV. Pennies and Dimes 24
V. Shapes and Measurements 29

Author:

Editor:
Graphic Design:

Carol Bauler, B.A.
Alan Christopherson, M.S. JoAnn Cumming, A.A.

Alpha Omega Publications ${ }^{\text {® }}$
804 N. 2nd Ave. E., Rock Rapids, IA 51246-1759
© MCMXCVII by Alpha Omega Publications, Inc. All rights reserved. LIFEPAC, Doc Dickory, Dewey Decimole, Revver, Rikki, and Vicky Dickory are registered trademarks or trademarks of Alpha Omega Publications, Inc. pending registration in the United States Patent and Trademark Office. All rights reserved.

Meet our friends.

There's Doc and Revver, and Vicky, too.

They'Il guide you through the LIFEPACs, and keep the scores for you.

Doc

Vicky

Revver

FUN WITH NUMBERS

My name is

Memory Verse

"We love Him, because He first loved us." 1 John 4:19

Objectives

1. I can add to 18 .
2. I can skip count by 2's and 10's.
3. I can learn about even and odd numbers.
4. I can learn place value.
5. I can count pennies and dimes.
6. I can measure objects and use a ruler.
7. I can recognize flat and solid shapes.

I. Part One

Count to 18 on the number line.

We can add on the number line.
We can add $6+3=9$.

Count to 6 and put your finger on the 6 .
Count 3 more.
We have counted to 9 on the number line.
We can say that $6+3=9$.
We can find facts to 18 on the number line.

Add on the number line.

Put your finger on the 1 and

count 1 more.
$1+1=$?
We have counted to \qquad on the number line.
We can say that $1+1=$ \qquad .
count 2 more.
$1+2=$?
We have counted to \qquad on the number line.
We can say that $1+2=$ \qquad .
count 3 more.
$1+3=$?
We have counted to \qquad on the number line.
We can say that $1+3=$ \qquad .
count 4 more.
$1+4=$?
We have counted to \qquad on the number line.
We can say that $1+4=$ \qquad .

Use the number line for the facts.
Write the number in the \square

