

Alpha Onoge Publicationst

SCIENCE 1210 KINEMATICS - NUCLEAR ENERGY

CONTENTS

I. MECHANICS 3
Kinematics 3
Dynamics 6
Energy 9
II. WAVE MOTION 13
Waves 13
Light 15
Sound 21
III. ELECTRICITY AND MAGNETISM 26
Sources 26
Fields and Forces 28
Circuits 33
IV. MODERN PHYSICS 41
The Planetary Atom 41
Emission Spectra and Quantized Energy 42
The Bohr Atom 46
DUALITY 49
Nuclear Energies 51
Authors: Mary Grace Ferreira, M.N.S.
Lee H. Dunning, M.S.T., M.S.Ed.
Alan Christopherson, M.S.
John Mitchell
Alpha Omega Graphics

Alpha Omega Publications ${ }^{\circ}$

KINEMATICS - NUCLEAR ENERGY

Physical phenomena may be grouped into four categories: mechanics, wave motion, electricity and magnetism, and atomic and nuclear physics.

Mechanics is the study of motion, force, momentum, work, power, and energy; wave motion is the study of wave behavior as it explains phenomena associated with light; electricity and magnetism deal with those two related phenomena; and atomic and nuclear physics, frequently referred to as modern physics, is the most imaginative of the four branches if only because imagination was copiously applied during its development. It is the most comprehensive of the four, applying principles from the other three, and introducing several unique insights.

Physics, like other true sciences, is a description and interpretation of natural phenomena. Advancing technology has made description more accurate; new interpretation has had to follow. Two cases in which interpretations have been adjusted to new descriptions are the models for light and for the atom. Three hundred years ago the wave model of light was postulated. That model still holds; but experiments of the twentieth century have revealed that light also behaves like a stream of particles. Somehow, light is both a wave and a particle.

In the second case, our perception of the atom has changed from an invisible solid sphere to an incredibly complex solar system, an analogy of which does not exist on the macroscopic level.

OBJECTIVES

Read these objectives. The objectives tell you what you will be able to do when you have successfully completed this LIFEPAC ${ }^{\circledR}$.

When you have finished this LIFEPAC, you should be able to:

1. Define and apply displacement, velocity, and acceleration.
2. Explain and apply Newton's laws of motion.
3. Define and apply momentum and impulse.
4. Explain and apply Kepler's laws of planetary motion.
5. Define and apply energy, work, power, and efficiency.
6. Describe transverse and longitudinal waves.
7. Calculate velocity problems for sound and light.
8. Calculate index of refraction problems for light.
9. Draw lens and mirror diagrams.
10. Calculate lens and mirror problems.
11. Describe refraction, diffraction, interference, and polarization.
12. Identify the phenomena that support the particle model and the wave model of light.
13. Identify natural sources of electricity and magnetism.
14. Describe force fields that surround electric charges and magnetic poles.
15. Apply Ohm's law to series and parallel circuits.
16. Describe the development of the atomic model.
17. Associate major contributors to the atomic model with their contributions.
18. Describe emission and absorption spectra as they relate to the quantum atom.
19. Describe the matter-energy duality.
20. Define isotope and half-life.
21. Explain nuclear reactions.

Survey the LIFEPAC. Ask yourself some questions about this study. Write your questions here.
\qquad

I. MECHANICS

The study of mechanics covers a broad area that includes kinematics, dynamics, and energy. In this review of mechanics, the emphasis will be on the use of equations to solve problems and to
understand the relationships of distance. time, velocity, acceleration, force, momentum, energy, and power.

SECTION OBJECTIVES

Review these objectives. When you have completed this section, you should be able to:

1. Define and apply displacement, velocity, and acceleration.
2. Explain and apply Newton's laws of motion.
3. Define and apply momentum and impulse.
4. Explain and apply Kepler's laws of planetary motion.
5. Define and apply energy, work, power and efficiency.

KINEMATICS

You may wish to review LIFEPAC 1201: the vocabulary words, the difference between fundamental and derived units, and scalars and vectors.

Kinematics is the study of motion apart from the cause of that motion. The aspects of motion are displacement, velocity, and acceleration.

Displacement. Displacement is the distance from a defined starting point to a second point along a straight line. Implicit in this definition is the specific direction from the starting point to the second point: displacement is a vector quantity.

The vector from the second point back to the starting point is a negative of the vector previously cited.

$$
\dot{\mathrm{A}} \longleftarrow \overrightarrow{\mathrm{BA}}=-\overrightarrow{\mathrm{AB}} \quad \dot{\mathrm{~B}}
$$

The magnitude of displacement is distance, the length of the straight line connecting the two points, without regard for the direction of travel.

The standard metric unit of distance and displacement is the meter. The meter has convenient subdivisions and multiples.

$$
\begin{array}{ll}
1,000 \text { meters }(\mathrm{m}) & =1 \text { kilometer }(\mathrm{km}) \\
10^{-2} \text { meters } & =1 \text { centimeter }(\mathrm{cm}) \\
10^{-3} \text { meters } & =1 \text { millimeter }(\mathrm{mm})
\end{array}
$$

10^{-6} meters	$=1$ micron (μ)
10^{-10} meters	$=1 \operatorname{angstrom}\left(\begin{array}{l}\mathrm{A}\end{array}\right)$

Velocity. Velocity is the rate at which displacement changes with respect to time. If a greater displacement occurs in a given period of time or if the same displacement occurs in a shorter period of time, the velocity increases. The reverse cases produce a decrease in velocity.

The symbol that conventionally represents change is the Greek letter Δ (delta). A change in displacement is Δd, and a change in displacement divided by the time interval required for that change is the definition of velocity:

$$
\mathrm{v}=\Delta d / \Delta t
$$

Velocity is the slope of a displacement-time graph:

Curve A represents constant velocity because the slope ${ }^{\Delta d} / \Delta t$ is uniform. Curve B represents increasing velocity because the slope at Point q is greater than the slope at Point p.

Acceleration. The rate of change in velocity with respect to time is acceleration. A greater velocity change in a given period of time or the same velocity change in a shorter period of time produces an increase in acceleration. The reverse cases produce a decrease in acceleration.

$$
\mathrm{a}={ }^{\Delta v} / \Delta t
$$

Acceleration is the slope of a velocity-time graph:

Curve A represents constant acceleration because the slope $\Delta \mathrm{v} / \Delta \mathrm{t}$ is uniform. Curve B represents increasing acceleration.

Velocity is a vector quantity. If the magnitude of the velocity (the speed) remains constant but its direction changes, this change in velocity, by definition, constitutes acceleration. Motion of an object in a circular path is centripetal acceleration.

When velocity vectors on a circular path are taken infinitely close together, the centripetal ("centerseeking") acceleration vector points to the center of the circle.

The magnitude of centripetal acceleration is proportional not to velocity but to velocity squared,

$$
a \propto v^{2},
$$

and is inversely proportional to the radius of the curve,

$$
a \propto 1 / \mathrm{R}
$$

Combining these two formulas, the result is

$$
a \propto \mathrm{v}^{2} / \mathrm{R}
$$

When a car turns a corner, the car is harder to control; and the centripetal acceleration is increased if the speed is increased or if speed is maintained on a curve with a smaller radius. Rollovers occur at high speeds on sharp turns.

As the velocity changes, the acceleration changes in ratios of $2: 4,3: 9,4: 16,5: 25$, and so on. Notice that the change in acceleration is as the square of the velocity. The radius of the curve, however, affects the centripetal acceleration in this manner $1 / 3: 3,1 / 2: 2,2: 1 / 2,4: 1 / 4$. Therefore, if the car turns in a larger arc (double the radius) and doubles the speed, the acceleration is decreased by half because of the greater arc; but the acceleration is increased by a factor of four because of the greater speed. Therefore, the centripetal acceleration has increased by a factor of two ($1 / 2 \cdot 4$ $=2$).

The last item in this section is the acceleration due to gravity. To simplify the study, assume that the initial velocity of an object in free fall is zero, that frictional effects are negligible, and that the acceleration is constant. A general statement of displacement produced by acceleration is

$$
d=1 / 2 a t^{2}
$$

When the acceleration is a result of gravity, the equation is conventionally rewritten

$$
d=1 / 2 g t^{2}
$$

The former equation is valid for any object undergoing acceleration. Acceleration resulting from

