Timber wolves live in packs. One female wolf usually has 4 to 7 cubs that the whole pack helps to raise. There are 3 packs of timber wolves living in the north woods. Each pack has 4 cubs. How many cubs are living in the north woods?

$1 \times 4=4$
$2 \times 4=8$
$3 \times 4=12$
$4 \times 4=16$
$5 \times 4=20$
$6 \times 4=24$
$7 \times 4=28$
$8 \times 4=32$
$9 \times 4=36$
Each product is 4 more than the one before. Each productends in an even number (0,2, 4, 6,8$).$

Making a rectangular array helps you see how much a product really is.

Make 4 rows of 6 or 6 rows of 4 .

$4 \times 6=24$
$6 \times 4=24$

Draw a rectangular array for each fact. Complete the multiplication sentence.

1. $2 \times 4=$
\qquad 2. $4 \times 5=$ \qquad 3. $1 \times 4=$ \qquad 4. $4 \times 4=$ \qquad

Write a multiplication sentence for each rectangle.
5.

rows \times squares in row
6.

\qquad
\qquad
\qquad \times \qquad $=$
7.

8.

\qquad $\times \ldots=$ \qquad
\qquad $\times \ldots=$ \qquad
\qquad

Use the times 3 facts to solve.
9. $2 \times 3=$ \qquad 12. $5 \times 3=$ \qquad
$* * * *$
$* * *$

$$
\begin{aligned}
& 50, \\
& 2 \times 4=
\end{aligned}
$$

10. $7 \times 3=$ \qquad 11. $6 \times 3=$ \qquad
so,
$7 \times 4=$ \qquad
$11.6 \times 3=$ SO, $6 \times 4=$ \qquad
so, $5 \times 4=$ \qquad

Multiply.
13. 2 14. 3 15. 4

4 $\times 4$

$\times 6 \times 3$
16. 2 17. 1
18. 4
19. 2
20. 3

\times

$\times 2$
$\times 3$
$\times 7$

9

$\times 8$

$$
\underline{\times 2} \underline{\times 2} \underline{\times 1} \underline{\times 4} \times 2 \times 9
$$

Write a multiplication sentence for the number of birds you see.

29.
R eview Write the ordinal number.
1.6 \qquad 2. 5 \qquad 3. 2
4. I I \qquad 5. 21 \qquad 6. 43
\qquad
7. You are riding your bike past 19th St., 20th St., and 21st St. What street will be next?
8. Of the 12 months of the year, in what position is June? \qquad
9. In what position is February? \qquad

