Revision Topic 6

Set Language And Matrices

Revision Practice 6

- **1.** Suppose a universal set $\varepsilon = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. If $A = \{x: x \text{ is an even number}\}$ and $B = \{x: x \text{ is a multiple of 3}\}$,
 - (a) list the elements in A,
 - (b) list the elements in B,
 - (c) find $A \cap B$.
 - (d) find $A \cup B$.

Solution

- (a) $\varepsilon = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $A = \{x: x \text{ is an even number}\}$ $= \{2, 4, 6, 8, 10\}$
- **(b)** $B = \{x: x \text{ is a multiple of 3}\}$ = $\{3, 6, 9\}$
- (c) $A \cap B = \{6\}$
- (d) $A \cup B = \{2, 3, 4, 6, 8, 9, 10\}$
- **2.** Let a universal set $\mathcal{E} = \{\text{red, orange, yellow, green, indigo, blue, purple}\}$, $A = \{\text{red, yellow, blue}\}$ and $B = \{\text{yellow, green}\}$.
 - (a) Find n(A).
 - (**b**) Find A'.
 - (c) Is B a subset of A?

Solution

- (a) n(A) = 3
- **(b)** $A' = \{ \text{orange, green, indigo, purple} \}$
- (c) green ∈ B but green ∉ A.∴ B is not a subset of A.
- 3. Let $E = \{\text{magnesium, iron, zinc, gold}\}\$ and $F = \{\text{gold, silver, iron}\}\$.
 - (a) Suggest a universal set that contains the two sets *E* and *F*.
 - **(b)** Find $E \cap F$.
 - (c) List all the possible subsets of $E \cap F$.

Solution

- (a) A universal set may be $\varepsilon = \{\text{all metals}\}\$.
- **(b)** $E \cap F = \{\text{iron, gold}\}\$
- (c) The subsets of $E \cap F$ are: ϕ , {iron}, {gold}, {iron, gold}.

- **4.** Copy the Venn diagram and shade the region that represents
 - (a) $A \cap B$,
- **(b)** $A \cup B'$.

Solution

$$A \cap B = \square$$

 $A \cup B' =$ all the shaded region

- 5. Refer to the Venn diagram.
 - (a) State the relationship between the sets E and F.
 - **(b)** Find $E \cup F$ and $E \cap F$.
 - (c) Copy the Venn diagram and shade the region that represents $E \cap F'$.

Solution

- (a) F is a subset of E.
- **(b)** $E \cup F = E$ $E \cap F = F$