Chapter 2 More About Quadratic Equations

Class Activity 1

Suppose $x+b x+c=(x+p)^{2}$.

1. Copy and complete the following table.

\boldsymbol{p}	$(\boldsymbol{x}+\boldsymbol{p})^{2}$	$\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$	\boldsymbol{b}	\boldsymbol{c}
5	$(x+5)^{2}$	$x^{2}+10 x+25$	10	25
3	$(x+3)^{2}$	$x^{2}+6 x+9$	6	9
-7	$(x-7)^{2}$	$x^{2}-14 x+49$	-14	49
$-\frac{1}{2}$	$\left(x-\frac{1}{2}\right)^{2}$	$x^{2}-x+\frac{1}{4}$	-1	$\frac{1}{4}$
1	$(x+1)^{2}$	$x^{2}+2 x+1$	2	1
-2	$(x+2)^{2}$	$x^{2}-4 x+4$	-4	4
6	$x^{2}+12 x+36$	12	36	
-4	$x^{2}-8 x+16$	-8	16	
$\frac{3}{2}$	$\left(x+\frac{3}{2}\right)^{2}$	$x^{2}+3 x+\frac{9}{4}$	3	$\frac{9}{4}$
$-\frac{5}{2}$	$\left(x-\frac{5}{2}\right)^{2}$	$x^{2}-5 x+\frac{25}{4}$	-5	$\frac{25}{4}$

2. The figure is made up of a square and two identical rectangles.
(a) Find Area I + Area II + Area III.
$=\underline{x^{2}}$ $+\quad \frac{b}{2}(x)$ $+$ \qquad
$=$ \qquad

(b) To make the figure a square, what shape should be added to it?

A square of area $\left(\frac{b}{2}\right)^{2}$.
3. What is the area of the shape obtained in $\mathbf{2}(\mathbf{b})$?
$x^{2}+b x+\left(\frac{b}{2}\right)^{2}$

