Exercise 5.1

Basic Practice

1. (a) Copy and complete the following table of values of x and y for the equation $y=2 x-1$.

\boldsymbol{x}	-1	0	1	2
\boldsymbol{y}				

(b) Draw the graph of $y=2 x-1$ for $-1 \leqslant x \leqslant 3$.
(c) Is $\left(\frac{3}{2}, 2\right)$ a solution of the equation $y=2 x-1$?

Solution

(a) $y=2 x-1$

x	-1	0	1	2
y	-3	-1	1	3

(b) The graph of $y=2 x-1$ is shown below.

(c)

$$
y=2 x-1
$$

When $x=\frac{3}{2}$,

$$
\begin{aligned}
y & =2\left(\frac{3}{2}\right)-1 \\
& =2 \\
\therefore \quad\left(\frac{3}{2}, 2\right) & \text { is a solution of } y=2 x-1 .
\end{aligned}
$$

2. (a) Copy and complete the following table of values of x and y for the equation $x+y=5$.

\boldsymbol{x}	0	3	5
\boldsymbol{y}			

(b) Draw the graph of $x+y=5$ for $0 \leqslant x \leqslant 5$.
(c) If $\left(1 \frac{1}{3}, p\right)$ is a solution of $x+y=5$, find the value of p.

Solution

(a) $x+y=5$

x	0	3	5
y	5	2	0

(b) The graph of $x+y=5$ is shown below.

(c) Substituting $x=1 \frac{1}{3}, y=p$ into $x+y=5$,

$$
\begin{aligned}
\frac{4}{3}+p & =5 \\
p & =\frac{11}{3}
\end{aligned}
$$

3. (a) Copy and complete the following table of values of x and y for the equation $x+3 y=9$.

\boldsymbol{x}	0	3	6	9
\boldsymbol{y}				

(b) Draw the graph of $x+3 y=9$ for $0 \leqslant x \leqslant 9$.
(c) If $(4, q)$ is a solution of $x+3 y=9$, find the value of q.

Solution

(a) $x+3 y=9$

\boldsymbol{x}	0	3	6	9
\boldsymbol{y}	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$

(b) The graph of $x+3 y=9$ is shown below.

(c) Substituting $x=4$ and $y=q$ into $x+3 y=9$, $4+3 q=9$

$$
q=\frac{5}{3}
$$

