2. A cylindrical sausage is 11 cm long and has a base radius of 1 cm . Find its volume and total surface area.

Solution

Volume of the sausage $=\pi \times 1^{2} \times 11$

$$
=11 \pi \mathrm{~cm}^{3}
$$

Total surface area of the sausage
$=2 \pi \times 1 \times 11+2 \times \pi \times 1^{2}$
$=24 \pi \mathrm{~cm}^{2}$
3. A metal cylindrical disc is 3 cm thick and its diameter is 14 cm . Find its volume and total surface area.

Solution

Volume of the disc $=\pi \times 7^{2} \times 3$

$$
=147 \pi \mathrm{~cm}^{3}
$$

Total surface area of the disc
$=2 \pi \times 7 \times 3+2 \times \pi \times 7^{2}$
$=140 \pi \mathrm{~cm}^{2}$
4. The external base radius of a cylindrical glass is 4 cm and its height is 9 cm . Find
(a) its volume,
(b) its external surface area.
(Hint: A glass is open at the top.)

Solution

(a) Volume of the glass $=\pi \times 4^{2} \times 9$

$$
=144 \pi \mathrm{~cm}^{3}
$$

(b) External surface area of the glass

$$
\begin{aligned}
& =2 \pi \times 4 \times 9+\pi \times 4^{2} \\
& =88 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Further Practice

5. Find the height of a cylinder if its
(a) volume $=63 \pi \mathrm{~cm}^{3}$, base radius $=3 \mathrm{~cm}$,
(b) volume $=100 \mathrm{~cm}^{3}$, base radius $=2 \mathrm{~cm}$.

Solution

(a) Let the height of the cylinder be $h \mathrm{~cm}$.

$$
\begin{aligned}
\pi \times 3^{2} \times h & =63 \pi \\
h & =7
\end{aligned}
$$

The height of the cylinder is 7 cm .
(b) Let $H \mathrm{~cm}$ be the height of the cylinder.

$$
\pi \times 2^{2} \times H=100
$$

$$
H=\frac{25}{\pi}
$$

$$
=7.96 \quad \text { (correct to } 3 \text { sig. fig.) }
$$

The height of the cylinder is 7.96 cm .
6. Find the base radius of a cylinder if its
(a) volume $=150 \pi \mathrm{~cm}^{3}$, height $=6 \mathrm{~cm}$,
(b) volume $=400 \mathrm{~cm}^{3}$, height $=8 \mathrm{~cm}$.

Solution

(a) Let the base radius of the cylinder be $r \mathrm{~cm}$. $\pi \times r^{2} \times 6=150 \pi$

$$
\begin{aligned}
r^{2} & =25 \\
r & =5
\end{aligned}
$$

The base radius of the cylinder is 5 cm .
(b) Let the base radius of the cylinder be $R \mathrm{~cm}$. $\pi \times R^{2} \times 8=400$

$$
\begin{aligned}
R & =\sqrt{\frac{50}{\pi}} \\
& =3.99 \quad \text { (correct to } 3 \text { sig. fig.) }
\end{aligned}
$$

The base radius of the cylinder is 3.99 cm .
7. Find the circumference of a solid cylinder if its
(a) curved surface area $=660 \mathrm{~cm}^{2}$, height $=10 \mathrm{~cm}$,
(b) curved surface area $=1200 \mathrm{~cm}^{2}$, height $=15 \mathrm{~cm}$.

Solution

(a) Circumference \times height $=$ curved surface area

$$
\begin{aligned}
\text { Circumference of the cylinder } & =\frac{660}{10} \\
& =66 \mathrm{~cm}
\end{aligned}
$$

(b) Circumference of the cylinder $=\frac{1200}{15}$

$$
=80 \mathrm{~cm}
$$

8. A metal cylinder of base radius 6 cm and height 5 cm is melted and recast into a cylindrical metal bar of base radius 2 cm . Find
(a) the length of the bar formed,
(b) the ratio of the total surface area of the original cylinder to that of the bar.

Solution

(a) Let $y \mathrm{~cm}$ be the length of the bar formed.

$$
\begin{aligned}
\pi \times 2^{2} \times y & =\pi \times 6^{2} \times 6^{2} \\
4 y & =180
\end{aligned}
$$

The length of the bar is 45 cm .
(b) Total surface area of the original cylinder
$=2 \pi \times 6 \times 5+2 \times \pi \times 6^{2}$
$=132 \pi \mathrm{~cm}^{2}$
Total surface area of the bar
$=2 \pi \times 2 \times 45+2 \times \pi \times 2^{2}$
$=188 \pi \mathrm{~cm}^{2}$
The required ratio $=132 \pi: 188 \pi$

$$
=33: 47
$$

