2. A cylindrical sausage is 11 cm long and has a base radius of 1 cm. Find its volume and total surface area.

Solution

Volume of the sausage = $\pi \times 1^2 \times 11$ = 11π cm³ Total surface area of the sausage = $2\pi \times 1 \times 11 + 2 \times \pi \times 1^2$ = 24π cm²

3. A metal cylindrical disc is 3 cm thick and its diameter is 14 cm. Find its volume and total surface area.

Solution

Volume of the disc = $\pi \times 7^2 \times 3$ = 147 π cm³ Total surface area of the disc = $2\pi \times 7 \times 3 + 2 \times \pi \times 7^2$ = 140 π cm²

- **4.** The external base radius of a cylindrical glass is 4 cm and its height is 9 cm. Find
 - (a) its volume,

(**b**) its external surface area.

(*Hint:* A glass is open at the top.)

Solution

- (a) Volume of the glass = $\pi \times 4^2 \times 9$ = 144 π cm³
- (b) External surface area of the glass = $2\pi \times 4 \times 9 + \pi \times 4^2$ = 88π cm²

Further Practice

- 5. Find the height of a cylinder if its
 - (a) volume = 63π cm³, base radius = 3 cm,
 - (b) volume = 100 cm^3 , base radius = 2 cm.

Solution

(a) Let the height of the cylinder be h cm. $\pi \times 3^2 \times h = 63\pi$ h = 7

The height of the cylinder is 7 cm.

(b) Let *H* cm be the height of the cylinder. $\pi \times 2^2 \times H = 100$

$$H = \frac{25}{\pi}$$

= 7.96 (correct to 3 sig. fig.) The height of the cylinder is 7.96 cm.

- 6. Find the base radius of a cylinder if its
 - (a) volume = 150π cm³, height = 6 cm,
 - (b) volume = 400 cm^3 , height = 8 cm.

Solution

(a) Let the base radius of the cylinder be r cm.

$$\pi \times r^2 \times 6 = 150\pi$$

$$r^2 = 25$$

 $r = 5$

The base radius of the cylinder is 5 cm.

(b) Let the base radius of the cylinder be *R* cm. $\pi \times R^2 \times 8 = 400$

$$R = \sqrt{\frac{50}{\pi}}$$

= 3.99 (correct to 3 sig. fig.) The base radius of the cylinder is 3.99 cm.

- 7. Find the circumference of a solid cylinder if its
 - (a) curved surface area = 660 cm^2 , height = 10 cm,
 - (b) curved surface area = 1200 cm^2 , height = 15 cm.

Solution

(a) Circumference × height = curved surface area

Circumference of the cylinder =
$$\frac{660}{10}$$

= 66 cm

(**b**) Circumference of the cylinder
$$=\frac{1200}{15}$$

= 80 cm

- **8.** A metal cylinder of base radius 6 cm and height 5 cm is melted and recast into a cylindrical metal bar of base radius 2 cm. Find
 - (a) the length of the bar formed,
 - (b) the ratio of the total surface area of the original cylinder to that of the bar.

Solution

- (a) Let y cm be the length of the bar formed. $\pi \times 2^2 \times y = \pi \times 6^2 \times 6^2$ 4y = 180The length of the bar is 45 cm.
- (b) Total surface area of the original cylinder = $2\pi \times 6 \times 5 + 2 \times \pi \times 6^2$ = 132π cm² Total surface area of the her

Total surface area of the bar

- $= 2\pi \times 2 \times 45 + 2 \times \pi \times 2^2$
- $= 188\pi \text{ cm}^2$

The required ratio =
$$132\pi$$
 : 188π
= 33 : 47

