11. Construct a quadrilateral $A B C D$ in which $A D=4 \mathrm{~cm}$, $B C=2 \mathrm{~cm}, C D=3 \mathrm{~cm}, \angle C=120^{\circ}$ and $\angle D=100^{\circ}$.

Solution

Construction Steps:

1. Draw a line segment $C D 3 \mathrm{~cm}$ long.
2. Draw a ray with end point C and making an angle of 120° with $C D$.
3. Mark a point B on the ray such that $B C=2 \mathrm{~cm}$.
4. Draw a ray with end point D on the same side of $C D$ as $B C$ such that it makes an angle of 100° with $C D$.
5. Mark a point A on the previous ray such that $A D=4 \mathrm{~cm}$.
6. Join A and B. Then $A B C D$ is the required quadrilateral.

Maths@Work

12. (a) Construct $\triangle A B C$ in which $A B=4.5 \mathrm{~cm}$, $A C=4.5 \mathrm{~cm}$ and $\angle B A C=130^{\circ}$ using Sketchpad.
(b) Measure $\angle A B C$ and $\angle A C B$ correct to the nearest degree.
(c) Draw a perpendicular line from A to meet the line $B C$ at D.
(d) Measure the lengths of $B D$ and $C D$ and give your answers correct to the nearest 0.1 cm .
(e) What do you observe from the result in (d)?

Solution

(a)

Construction Steps:

1. Draw a line segment $A B 4.5 \mathrm{~cm}$ long.
2. Rotate $A B$ about A for 130° to $A C$.
3. Join B and C. Then $\triangle A B C$ is the required triangle.
(b) $\angle A B C=25^{\circ}$ (correct to the nearest degree) $\angle A C B=25^{\circ} \quad$ (correct to the nearest degree)
(d) $B D=4.1 \mathrm{~cm} \quad$ (correct to the nearest 0.1 cm) $C D=4.1 \mathrm{~cm} \quad$ (correct to the nearest 0.1 cm .)
(e) When $A B=A C$, the perpendicular $A D$ from A to $B C$ bisects $B C$.
4. (a) Draw an equilateral triangle $A B C$ using Sketchpad.
(b) Plot the midpoints D, E and F of the sides $A B, B C$ and $C A$.
(c) Draw $\triangle D E F$.
(d) What type of triangle is $\triangle D E F$?
(e) Find the value of $\frac{D E}{A B}$.

Solution

(a)

Construction Steps:

1. Draw a line segment $A B$.
2. Draw two circles with centres at A and B and equal radii $A B$.
3. Mark C as one of the intersecting points of the circles.
4. Draw the line segments $A C$ and $B C$. Then $\triangle A B C$ is an equilateral triangle.
(b) Use the midpoint command to create the midpoints D, E, F of the sides $A B, B C$ and $C A$.
(c) Draw the line segments $D E, E F$ and $F D$ to form $\triangle D E F$.
(d) $\triangle D E F$ is an equilateral triangle.
(e) $\frac{D E}{A B}=0.5$
