5.1 Meaning Of Linear Equations in Two Unknowns

The equation

$$
\begin{equation*}
2 x+3=5 \tag{1}
\end{equation*}
$$

is called a linear equation in one unknown x. We have learnt that its solution is given by

$$
\begin{aligned}
2 x & =2 \\
x & =1 .
\end{aligned}
$$

That is, the equation has a unique solution $x=1$.
If we replace the number 3 in the above equation by a variable y, the equation becomes

$$
\begin{equation*}
2 x+y=5 \tag{2}
\end{equation*}
$$

The equation $2 x+y=5$ is a linear equation in two unknowns x and y.
From the equation, we know that the value of x depends on the value of y.
When $y=1,2 x+1=5$ gives $x=2$.
When $y=2,2 x+2=5$ gives $x=1.5$.
When $y=3,2 x+3=5$ gives $x=1$.
The pairs of values of x and y which satisfy the equation are the solutions of the equation. Therefore, $(x=2$ and $y=1),(x=1.5$ and $y=2),(x=1$ and $y=3), \ldots$ are solutions of the equation.

Notice that unlike equation (1), equation (2) has infinitely many solutions. If we represent the solutions by ordered pairs $(2,1),(1.5,2),(1,3)$, etc and plot them as points on a coordinate plane, we will see that they lie on a straight line as shown in the graph below.

