Further Practice

5. Find the height of a cylinder if its
(a) volume $=63 \pi \mathrm{~cm}^{3}$, base radius $=3 \mathrm{~cm}$,
(b) volume $=100 \mathrm{~cm}^{3}$, base radius $=2 \mathrm{~cm}$.
6. Find the base radius of a cylinder if its
(a) volume $=150 \pi \mathrm{~cm}^{3}$, height $=6 \mathrm{~cm}$,
(b) volume $=400 \mathrm{~cm}^{3}$, height $=8 \mathrm{~cm}$.
7. Find the circumference of a solid cylinder if its
(a) curved surface area $=660 \mathrm{~cm}^{2}$, height $=10 \mathrm{~cm}$,
(b) curved surface area $=1200 \mathrm{~cm}^{2}$, height $=15 \mathrm{~cm}$.
8. A metal cylinder of base radius 6 cm and height 5 cm is melted and recast into a cylindrical metal bar of base radius 2 cm . Find
(a) the length of the bar formed,
(b) the ratio of the total surface area of the original cylinder to that of the bar.
9. A rectangular tray of dimensions 15 cm by 10 cm by 4 cm is full of water. The water is poured into an empty cylindrical jar of internal radius 5 cm . Find the depth of water in the jar.
10. The figure shows a half solid cylinder of base diameter 2 cm and height 2.5 cm .
(a) Find its volume.
(b) Draw a net of the solid.
(c) Find its total surface area.

Maths@Work

11. A measuring cylinder of internal diameter 5 cm is partially filled with water. When a stone is placed in the cylinder as shown, the water level rises by 3 cm . Find
(a) the volume of the stone,
(b) the increase in the contact area between the water and the measuring cylinder.

