A cylinder can be considered as a prism whose base is an n-sided polygon where n is very large. Therefore:

$$
\text { Volume of cylinder }=\text { Base area } \times \text { Height }
$$

When the base radius is r units and the height is h units, we have the following formula:

$$
\text { Volume of cylinder }=\pi r^{2} h
$$

From the net of the cylinder, we can see that
$A A^{\prime}=$ circumference of the base circle

$$
=2 \pi r
$$

\therefore Area of curved surface $=$ Area of rectangle $A A^{\prime} D^{\prime} D$

$$
\begin{aligned}
& =2 \pi r \times h \\
& =2 \pi r h
\end{aligned}
$$

Total surface area of a closed cylinder $=$ Area of curved surface $+2 \times$ Base area. Thus we have the following formula:

Total surface area of a closed cylinder $=2 \pi r h+2 \pi r^{2}$

Base area of a cylinder $=$ area of circular base $=\pi r^{2}$

Remark

If a cylinder has only one end face, it is an open cylinder. A solid cylinder is a closed cylinder.

Remark

Example 9 The base radius of a solid cylinder is 3 cm and its height is 8 cm . Find
(a) the volume of the cylinder,
(b) the total surface area of the cylinder.
(Leave your answers in terms of π.)
Solution (a) When $r=3$ and $h=8$, we have:
Volume of the cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times 3^{2} \times 8 \\
& =72 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

(b) Total surface area of the cylinder $=2 \pi r h+2 \pi r^{2}$

$$
\begin{aligned}
& =2 \pi \times 3 \times 8+2 \pi \times 3^{2} \\
& =66 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Try It 9! The base radius of a solid cylinder is 2 cm and its height is 7 cm . Find
(a) the volume of the cylinder,
(b) the total surface area of the cylinder.
(Leave your answers in terms of π.)

