Lesson 20 Factor Polynomials Te

Sample Teacher Manual Page

Factoring Trinomials We will be finding the <u>factors</u> of $X^2 + 7X + 12$ using the blocks with the algebra inserts snapped into the back. This is the opposite of multiplying two binomials to find the <u>product</u>, which is a trinomial. In Lesson 19 you were given the factors, and you were to find the product. Now, you are given the product and are asked to find the factors.

First build $X^2 + 7X + 12$. This is the product, which is given. Now build a rectangle using all the blocks. Then find the factors by reading the length of the over dimension and the up dimension.

Example 2

Now find the factors of $X^2 + 8X + 12$. Represent with the manipulatives, build a rectangle, and read the factors.

Notice the relationship between the last term (12), the middle term (7X or 8X), and the factors. This always works when the coefficient of X^2 is 1.

X ² + 7X + 12 =	(X+ 4)(X + 3)	The last term is found by multiplying 3 x 4. The middle term by adding 3X + 4X.
$X^2 + 8X + 12 =$	(X+ 6)(X + 2)	The last term is found by multiplying 6 x 2. The middle term by adding $6X + 2X$.

The factors of the last term are the addends of the middle term.

20-2

Example 3

A)
$$\begin{array}{c} 2X + 3 \\ X + 2 \\ \hline \\ 4X + 6 \\ \hline \\ 2X^2 + 3X \\ \hline \\ 2X^2 + 7X + 6 \end{array}$$
B)
$$(X + 2)(2X + 3) = (X)(2X + 3) + (2)(2X + 3) = (2X^2 + 3X) + (4X + 6) \\ \hline \\ 2X^2 + 7X + 6 \\ \hline \\ \\ 2X^2 + 7X + 6 \end{array}$$

When multiplying horizontally, there are four <u>partial products</u> just as before, but they are arrived at using a formula called FOIL: F - first, O - outside, I - inside, L - last. Each letter corresponds to a partial product.

F
$$\ln (X + 2)(2X + 3)$$
, $X \cdot 2X$ is the First term times the first term $_{2X^2}$
O $\ln (X + 2)(2X + 3)$, $X \cdot 3$ is the Outside term times the outside term $_{3X}$
I $\ln (X + 2)(2X + 3)$, $2 \cdot 2X$ is the Inside term times the inside term $_{4X}$
L $\ln (X + 2)(2X + 3)$, $2 \cdot 3$ is the Last term times the last term $_{6}$
 $_{2X^2 + 3X + 4X + 6}$
 $_{2X^2 + 7X + 6}$

Example 4

A)
$$X + 3$$

 $X + 4$
 $4X + 12$
 $X^2 + 3X$
 $X^2 + 7X + 12$
B) $(X + 4)(X + 3) = (X)(X + 3) + (4)(X + 3) = (X^2 + 3X) + (4X + 12)$
 $X^2 + 7X + 12$
Sample

Teacher Manual Page Build a rectangle and find the factors. Check by multiplying.

- 1) $X^2 + 4X + 4$ 2) $X^2 + 5X + 6$
- 3) $X^2 + 11X + 10$ 4) $X^2 + 6X + 8$
- 5) $X^2 + 8X + 7$ 6) $X^2 + 8X + 12$
- 7) $X^2 + 12X + 11$ 8) $X^2 + 7X + 6$
- 9) $X^2 + 9X + 14$ 10) $X^2 + 16X + 15$
- 11) $X^2 + 3X + 2$ 12) $X^2 + 4X + 3$
- 13) X² + 9X + 8 14) X² + 19X + 18
- 15) $X^2 + 9X + 20$ 16) $X^2 + 10X + 21$

Find the factors and check by multiplying. (You will not have enough blocks to build some of these)

1) $X^2 + 10X + 16$ 2) $X^2 + 11X + 28$ 4) $X^2 + 7X + 12$ 3) $X^2 + 13X + 22$ 5) $X^2 + 8X + 15$ 6) $X^2 + 11X + 30$ 7) $X^2 + 5X + 4$ 8) $X^2 + 6X + 5$ 10) $X^2 + 12X + 20$ 9) $X^2 + 8X + 16$ 11) $X^2 + 11X + 18$ 12) $X^2 + 17X + 30$ 13) $X^2 + 7X + 10$ 14) $X^2 + 2X + 1$ 15) $X^2 + 10X + 25$ 16) $X^2 + 26X + 25$ Build a rectangle and find the factors.

1) $X^{2} + 7X + 12 = (+)(+)$ 2) $X^{2} + 10X + 16 = (+)(+)$ 3) $X^{2} + 11X + 24 = (+)(+)$ 4) $X^{2} + 8X + 12 = (+)(+)$

Build a rectangle and find the area (product)

- 5) (X + 4)(X + 2) =
- 7) Find the factors: $X^2 + 7X + 6$
- 9) Find the factors: $X^2 + 2X + 1$

Add. Sample 11) 2X² - 7X - 3 + X² + 5X + 9 Student Text Page

13) Simplify: (P⁻⁴)² P³P¹

14) Simplify: (R⁻²S³)⁻³

12) $6X^2 + 2X + 1$

 $+ X^2 - 4X + 3$

6) (X + 5)(X + 3) =

 Check #7 by multiplying the factors to find the product.

10) Check #9 by multiplying the factors to find the product.

- 15) $15^2 =$ 16) $\sqrt{16} =$
- 17) Find three consecutive odd integers such that eleven times the first, plus two times the second, equals six times the third, plus one.
- 18) Nine coins, made up of dimes and nickels, have a value of \$.60. How many of each?
- 19) Express in standard form of an equation of a line: Y = 7X + 3

20) Graph: 4Y < 3X - 5

)

Build a rectangle and find the factors.

- 1) $X^2 + 11X + 28 = (+)(+)$ 2) $X^2 + 4X + 4 = (+)(+)$
- 3) $X^2 + 6X + 8 = (+)(+)$

Build a rectangle and find the area (product)

- 5) (X + 5)(X + 1) =
- 7) Find the factors: $X^2 + 12X + 32$
- 9) Find the factors: $X^2 + 20X + 100$

Add.

- 11) $X^2 + X 4$ + $X^2 + 3X + 3$ Page
- 13) Simplify: $[(P^5)^3]^{-2}$

14) Simplify: $(S^6 R^{-3} S^2)^0$

 $+ 5X^2 - 4X + 10$

12) $2X^2 + 7X + 6$

4) $X^2 + 8X + 16 = (+)($

 Check #7 by multiplying the factors to find the product.

10) Check #9 by multiplying the factors to find the product.

6) (X + 3)(X + 3) =

- 15) $11^2 =$ 16) $\sqrt{144} =$
- Find three consecutive odd integers such that fourteen times the second, plus four times the first, equals twelve times the third, minus two.
- 18) Twenty-seven coins, made up of dimes and nickels, add up to \$1.80. How many of each?
- 19) Graph the line Y = 3/2 X 1

20) Graph a line perpendicular to #19 through (3, -3).

Build a rectangle and find the factors.

- 1) $X^2 + 8X + 7 = (+)(+)$
- 3) $X^2 + 9X + 20 = (+)(+)$

Build a rectangle and find the area (product)

- 5) (X + 1)(X + 9) =
- 7) Find the factors: $X^2 + 7X + 12$
- 9) Find the factors: $X^2 + 10X + 21$

13) Simplify: (P³)⁰ P⁴P⁻¹

+ $X^2 + 2X - 1$

15) 13² =

Add.

11) $4X^2 - 4X + 1$

17) Find three consecutive integers such that the second, plus seven times the third, equals five times the first.

Sample Student Text

Page

- 18) Twenty coins, made up of pennies and nickels, add up to \$.76. How many of each?
- 19) Rewrite in slope-intercept form: 4Y + 3X = 16
- 20) Graph: $2Y \ge 3X 2$

2)
$$X^2 + 5X + 6 = (+)(+)$$

- 4) $X^2 + 8X + 15 = (+)(+)$
- 6) (X + 7)(X + 2) =
- 8) Check #7 by multiplying the factors to find the product.
- 10) Check #9 by multiplying the factors to find the product.
- 12) $2X^2 + 3X + 3$ + $X^2 + 7X - 2$

16) $\sqrt{25} =$

14) Simplify: $(S^2 R^0 S^0)^{-2} R^5$

- 1) If (X + A) is multiplied times (X + B), the final term of the resulting trinomial will be
 - (A) X^2 (B) (A + B)X (C) BX (D) AX (E) AB
- 2) If (X + A) is multiplied times (X + B), the middle term of the resulting trinomial will be
 - (A) X^2 (B) (A + B)X (C) BX (D) AX
 - (E) AB

Test Booklet Page

- 3) The factors of $X^2 + 3X + 2$ are (A) (X + 3)(X + 2) (B) (X + 1)(X + 2)(C) X(X + 2) (D) (X + 5)(X + 2)
 - (E) (X 1)(X + 2)
- 4) The factors of $X^2 + 8X + 15$ are (A) (X + 2)(X + 4) (B) (X + 1)(X + 8)(C) (X + 10)(X + 5) (D) (X + 7)(X + 8)(E) (X + 3)(X + 5)
- 5) The factors of $X^2 + 12X + 36$ are
 - (A) (X + 3)(X + 4) (B) (X + 6)(X + 6)
 - (C) (X + 6)(X + 2) (D) (X + 18)(X + 18)
 - (E) (X 6)(X + 6)
- 6) The factors of $X^2 + 12X + 20$ are
 - (A) (X + 12)(X 20) (B) (X + 2)(X + 10)
 - (C) X(X + 20) (D) (X + 5)(X + 4)
 - (E) (X + 12)(X + 20)
- 7) The factors of $X^2 + 11X + 24$ are
 - (A) (X + 4)(X + 6) (B) (X + 2)(X + 12)
 - (C) (X + 3)(X + 8) (D) (X + 1)(X + 24)
 - (E) (X + 5)(X + 6)

- 8) The factors of $X^2 + 6X + 5$ are
 - (A) (X + 2)(X + 3) (B) (X + 1)(X + 6)
 - (C) X(X + 6) (D) (X + 1)(X + 5)
 - (E) (X + 5)(X + 6)
- 9) The factors of $X^2 + 14X + 49$ are
 - (A) (X + 7)(X + 7) (B) (X + 1)(X + 49)
 - (C) X(X + 7) (D) (X + 2)(X + 7)
 - (E) (X + 1)(X + 14)
- 10) The factors of $X^2 + 11X + 10$ are
 - (A) (X + 2)(X + 5) (B) (X + 1)(X + 10)
 - (C) X(X + 10) (D) (X + 1)(X + 11)
 - (E) (X + 5)(X + 5)
- 11) (A + B)(A + B) is equal to (A) $A^2 + BA + B^2$ (B) $A^2 + 2BA + AB^2$ (C) $A^2 + 2BA + (AB)^2$ (D) $A^2 + 2BA + B^2$ (E) $A^2 + A + B + B^2$
- 12) (X + BY)(X + BY) is equal to (A) $X^2 + 2BYX + BY^2$ (B) $X^2 + BYX + (BY)^2$ (C) $X^2 + 2BY + (BY)^2$ (D) $X^2 + 2BY + BY^2$ (E) $X^2 + 2BYX + (BY)^2$

13) What are the factors of $X^2 + (R + T)X + RT$? (A) (X + X)(X + T) (B) (R + X)(T + X)(C) (X + R)(X + T) (D) X(R + T)(E) (R + T)(R + T)

- 14) What are the factors of $X^2 + 2RX + R^2$?
 - (A) (X + 2)(X + 2R) (B) (X + R)(X + R)
 - (C) (X + 2R)(X + 2R) (D) X(RX + R)
 - (E) (R + X)(R + X)
- 15) Fill in the blank: The numbers that are added to get the coefficient of the middle term are the _____ of the last term.
 - (A) exponents (B) factors (C) inverse
 - (D) addends (E) products

Sample

Sample Teacher Manual Page

Practice 20B - Lesson 20A