
Module #1: Units and Vectors Revisited

Introduction

There are probably no concepts more important in physics than the two listed in the title of this
module.  In your first-year physics course,  I am sure that you learned quite a lot about both of these
concepts.  You certainly did not learn everything, however.  Whether we are talking about units or
vectors, there is simply too much information to possibly learn in just one year.  As a result, we will take
another look at both of these concepts in this first module.  This will help you “warm up” to the task of
recalling all of the things you learned in your first-year physics course, and it will help to learn both of
these valuable concepts at a much deeper level.

Units Revisited

Almost regardless of the physics course, units should be covered first, because a great deal of
physics is based on properly analyzing units.  In your first-year course, you were taught how to solve
problems such as the one in the following example:

EXAMPLE 1.1

A sample of iron has a mass of 254.1 mg.  How many kg is that?

In this problem, we are asked to convert from milligrams to kilograms.  We cannot do this
directly, because we have no relationship between mg and kg.  However, we do know that a milligram
is the same thing as 0.001 grams and that a kilogram is the same thing as 1,000 grams.  Thus, we can
convert mg into g, and then convert g into kilograms.  To save space, we can do that all on one line:
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The sample of iron has a mass of 2.541 x 10-4 kg.

Did this example help dust the cobwebs out of your mind when it comes to units?  It should all be
review for you.  I converted the units using the factor-label method.  Because this is a conversion, I had
to have the same number of significant figures as I had in the beginning, and even though it was not
necessary, I reported the answer in scientific notation.  If you are having trouble remembering these
techniques, then go back to your first-year physics book and review them.

There are a couple of additional things I want you to learn about units.  I am not going to show
you any new techniques; I am just going to show you new ways of applying the techniques that you

should already know.   Consider, for example, the unit for speed.  The standard unit for speed is 
m
sec

.
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However, any distance unit over any time unit is a legitimate unit for speed.  Since that is the case, we
should be able to convert from one unit for speed to any other unit for speed.  Study the following
example to see what I mean.

EXAMPLE 1.2

As of 2001, the record for the fastest lap at the Indianapolis 500 (“The greatest Spectacle in
Racing”) was held by Arie Luyendyk.  He averaged a speed of 225.2 miles per hour over the
entire 2.5-mile stretch of the Indianapolis speedway.  What is that speed in meters per
second?

This problem requires us to make two conversions.  To get from miles per hour to meters per
second, we must convert miles to meters.  Then, we must convert hours to seconds.  This is actually
easy to do.  Remember, in miles per hour, the unit “miles” is in the numerator of the fraction and the unit
“hours” is in the denominator.  Also remember that there are 1609 meters in a mile and that 1 hour  is
the same as 3600 seconds.
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Although there is nothing new here, you probably haven’t seen a conversion done in this way.  Despite
the fact that the unit for speed is a derived unit, I can still do conversions on it.  I could have just
converted miles to meters and gotten the unit meters/hour.  I also could have  just converted hours to
seconds and gotten miles/second.  In this case, however, I did both.  That way, I ended up with
meters/second.  When working with derived units, remember that you can convert any or all units that
make up the derived unit.  Thus, 225.2 miles per hour is the same thing as 100.7 meters per second.
Please note that although 3600 has only 2 significant figures, the number is actually infinitely precise,
because there are exactly 3600 seconds in an hour.  Thus, it really has an infinite number of significant
figures.  This is why I say that the best rule of thumb is to always end your conversion with the same
number of significant figures as that with which you started your conversion.

Okay, we are almost done reviewing units.  There is just one more thing that you need to
remember.  Sometimes, units have exponents in them.  You were probably taught how to deal with this
fact in your first-year physics course, but we need to review it so that you really know how to deal with
it.

EXAMPLE 1.3

One commonly used unit for volume is the cubic meter.  After all, length is measured in
meters, and volume is length times width times height.  The more familiar unit, however, is
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cubic centimeters (cc) which is often used in medicine.  If a doctor administers 512 cc of
medicine to a patient, how many cubic meters is that?

Once again, this is a simple conversion.  If, however, you do not think as you go through it, you
can mess yourself up.  We need to convert cubic centimeters to cubic meters.  Now remember, a cubic
centimeter is just a cm3 and a cubic meter is just a m3.  We have no relationship between these units, but
we do know that 1 cm = 0.01 m.  That’s all we need to know, as long as we think about it.  Right now,
I have the following relationship:

1 cm  = 0.01 m

This is an equation.  I am allowed to do something to one side of the equation as long as I do the exact
same thing to the other side of the equation.  Okay, then, let’s cube both sides of the equation:
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Now look what we have.  We have a relationship between cm3 and m3, exactly what we need to do our
conversion!
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So 512 cc’s is the same as 5.12 x 10-4  m3.

When most students do a conversion like the one in the example without thinking, they simply
use the relationship between cm and m to do the conversion.  That, of course does not work, because
the cm3 unit does not cancel out, and you certainly don’t get the m3 unit in the end:
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Do you see what happened?  The cm unit canceled one of the cm out of cm3, but that still left cm2.
Also, since m is the unit that survives from the conversion relationship, you get the weird unit of m⋅cm2!
When you are working with units that have exponents in them, you need to be very careful about how
you convert them.  At the risk of “beating this to death,” I want to combine the previous two examples
into one more example.
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EXAMPLE 1.4

The maximum acceleration of a certain car is 21,600 miles per hour2.  What is the acceleration
in feet per second2?

Once again, this is a derived unit, but that should not bother you.  All we have to do is convert
miles into feet and hours2 into seconds2.  There are 5280 feet in a mile, so that conversion will be easy.
We do not know a conversion between hours2 and seconds2, but we do know that:

1 hour = 3600 seconds

To get the conversion relationship between hours2 and seconds2, then, we just square both sides:

(1 hour)2 = (3600 seconds)2

1 hour2 = 1.296 x 107 seconds2

Once again, please note that the conversion relationship between hours and seconds is exact.  Thus,
both numbers have an infinite number of significant figures.  That’s why I reported all digits when I
squared 3600 seconds.

Now that I have the conversion relationships that I need, the conversion is a snap:
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Notice once again that had I not squared the conversion relationship between hours and seconds, the
units would not have worked out.  In order for hr2 to cancel, the unit hr2 had to be in the problem.
That’s why it is important to watch the units and make sure they cancel properly.

Make sure that you understand how to manipulate units this way by performing the following
“on your own” problems.

ON YOUR OWN

1.1  The speed limit on many highways in the United States is 65 miles per hour.  What is the speed limit
in centimeters per second?  (There are 1609 meters in a mile.)

1.2  The size of a house is 1600 square feet.  What is the square yardage of the house?
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1.3  The standard energy unit is the Joule (
kg m⋅ 2

2sec
).  An alternative energy unit is the erg  (

g cm⋅ 2

2sec
).  I

am serious.  It is called the erg!  Convert 151 Joules into ergs.

A Review of Vectors

In your first-year physics course, you learned about vectors .  A quantity is called a vector if it
contains information about both magnitude and direction.  A quantity is called a scalar if it contains only
information about magnitude and no information about direction.  For example, if I tell you that my car is
moving at 55 miles per hour, I am giving you a scalar quantity.  The speed of the car tells you “how
much” (magnitude), but it does not tell you in what direction the car is moving.  If I tell you that my car is
moving at 55 miles per hour due west, then I am giving you a vector quantity.  Not only do you know
how fast I am traveling (the magnitude), but you also know which way I am heading (the direction).
You should have already learned that we call the scalar quantity in this case speed, and we call the
vector quantity velocity.

Since vectors contain information about both magnitude and direction, we use arrows to
represent them.  The length of the arrow represents the magnitude, while the direction in which the
arrow points represents the direction.  When I refer to vectors, I will emphasize that they are vectors by
placing them in boldface type.  For example, if you see “A” in an equation, you will know that it is a
vector quantity because it is in boldface type.  If you see “A” in an equation, you will know that it is a
scalar quantity because it is not in boldface type.

Now although vectors and scalars are quite different, they can interact mathematically.  For
example, I can multiply a vector by a scalar. What happens if I do that?  Well, a vector contains
information about magnitude and direction, while a scalar contains information only about magnitude.  If
I multiply a vector by a scalar, then, the multiplication will affect the magnitude of the vector.  If the
scalar happens to be negative, it does affect the direction of the vector as well.  Study the following
figure to see what I mean.

FIGURE 1.1
Scalar Multiplication

A
2⋅A

½ ⋅A -2⋅A
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Notice in the figure that I start with an arrow which represents vector A.  It has a magnitude (the
length of the arrow) and a direction (the direction in which the arrow points).  When I multiply by 2 (a
scalar), what happens?  The arrow points in the same direction, but it is twice as long.  That’s because
when I multiply a vector by a positive scalar, I multiply its magnitude by the scalar, but I leave the
direction alone.  Thus, the length of the arrow (the magnitude) changes, but the direction does not.  In
the same way, when I multiply A by ½, the length of the arrow changes (it gets cut in half), but the
direction does not.

Now look at the last arrow in the figure.  This arrow represents what happens to the vector A
when I multiply by a negative scalar.  When you multiply a vector by a positive scalar, the direction of
the vector does not change.  However, when you multiply by a negative scalar, the direction of the
vector becomes opposite of what it once was.  Thus, when I multiply A by negative 2, the length of the
vector increases by a factor of 2, but the vector also points in the opposite direction.  Vector A points
towards the upper right hand corner of the figure, while the vector -2⋅A is twice as long and points to
the lower left-hand corner of the figure.

When vectors are multiplied by scalars, then, the result is another vector.  As you already
learned in your first-year physics course, vectors can not only be multiplied by scalars, but they can also
be added to other vectors.  The result in that case is a vector as well.  To review how vectors are
added to one another, however, we must first review the way that vectors can be mathematically
represented.

A two-dimensional vector can be mathematically represented in one of two ways.  It can be
represented by its magnitude and an angle, or it can be written in terms of two perpendicular
components.  Although any two perpendicular components can be used to define a two-dimensional
vector, we typically use horizontal and vertical components.  These two ways of mathematically
representing a vector, as well as the relationships between them, are summarized in Figure 1.2.

FIGURE 1.2
A Two-Dimensional Vector

horizontal
component (Ax)

vertical
component
(Ay)

A

horizontal (x) axis

vertical
(y) axis

θ

Mathematical Relationships
Ax = A⋅cosθ
Ay = A⋅sinθ

tanθ = 
A

A
y

x

A = A Ax y
2 2+

Vector A can be written as:
(1)  A (magnitude) and θ
           or
(2)  Ax and Ay
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Notice, then, that the vector A can be represented with a magnitude (A) and a direction (θ).
For example, if I told you that there was buried treasure 10.5 miles away from your current location at
an angle of 50.4o, I would be giving you a vector to describe the location of the treasure.  I would be
giving you that vector in terms of its magnitude and angle.  Alternatively, I could tell you that to get to the
treasure, you need to walk straight for 6.5 miles then turn left and walk another 8.1 miles.  That is also a
vector which represents the location of the treasure, but the vector is given in terms of two components
rather than a magnitude and direction.  Of course, since both methods represent the same vector, they
should be related to one another.  The figure summarizes the various means by which the components of
a vector relate to the vector’s magnitude and direction.

Now we can move on to adding vectors.  In order to graphically add vectors, we simply put the
tail of the second vector at the head of the first vector, and then we draw an arrow from the tail of the
first to the head of the second.  The new arrow is the graphical representation of the final vector, which
is the sum of the two original vectors.  Alternative, we can mathematically add vectors.  To do this, we
simply add their x-components to get the final vector’s x-component, and we add their y-components
to get the final vector’s y-component.  These processes are summarized in Figure 1.3.

FIGURE 1.3
Adding Vectors

On the left-hand side of the figure, two vectors (A and B) are drawn.  Their horizontal (x)
components (Ax and Bx) as well as their vertical (y) components (Ay and By) are shown.  In the middle
of the figure, the graphical method for adding vectors is shown.  To add vectors A and B, we put the
tail of B on the head of A.  Then, we draw an arrow from the tail of A to the head of B.  The resulting
arrow is the sum of A + B.  Notice that the figure also shows the graphical representation of B + A.  At
first glance, you might think that the result of A + B is different than the result of B + A.   That’s not
true.  Remember, a vector is determined by its magnitude and direction.  Both the result of A + B and
the result of B + A have the same magnitude (length) and direction (they both point in the same
direction).  Thus, they each represent the same vector.  They are simply shifted relative to one another.

A

Ax

Ay

Bx

By
B

A
B

C

C = A + B
C

Adding the vectors graphically: Adding the vectors
mathematically:

Cx = Ax + Bx

Cy = Ay + By

Two original
vectors - A and B:

A
B

C = B + A

C
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That brings up an important thing to remember about vectors.  They can be moved around
without affecting their value.  As long as you do not change the length of the arrow or the direction in
which the arrow points, you can move it all over the place without changing the meaning of the vector at
all.

Since physics is inherently a problem-solving science, the graphical approach to adding vectors
is not enough.  It gives us a visual picture of the sum of vectors, but it does not give us any numbers with
which to work.  Thus, we will mostly use the mathematical method for adding vectors, which is shown in
the right hand portion of the figure.  To add two vectors mathematically, we simply add the horizontal
components together.  This gives us the horizontal component of the final vector.  We then add the
vertical components together, and that gives us the vertical component of the vector.  In the figure, then,
the x-component of the final vector is simply Ax + Bx, while the y-component is simply Ay + By.  Let me
go through a quick example problem to jog your memory on all of this.

EXAMPLE 1.5

An explorer is given directions on how to get to a particular place.  He is told to travel for 15.2
miles at a heading of 30.0 degrees and then to turn and travel 30.4 miles at a heading of 170.2
degrees.  What is the vector which describes the explorer’s final position?  Solve this problem
both graphically and mathematically.

Let’s start with the graphical method.  First, we have to figure out how to draw the first vector.
Well, the magnitude of the first vector (let’s call it A) is 15.2 miles.  The angle is 30.0 degrees.  We can
represent that vector as:

Please realize that the drawing simply approximates the values of the vector to give us a visual idea of
what it looks like.  We know that if the arrow pointed straight along the horizontal axis to the right, the
angle would be 0 degrees.  If it pointed up along the vertical axis, the angle would be 90.0 degrees.  If it
bisected those two, it would be pointing at 45 degrees.  An angle of 30.0 degrees, then, is close to
bisecting the two axes, but not quite.

Next, we put the tail of the second vector at the head of the first.  The second vector has a
magnitude of 30.4 miles and an angle of 170.2 degrees.  Putting it on the head of the first vector gives us
the following drawing:

30.0o

A
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Remember, if the vector pointed straight up, its angle would be 90.0 degrees.  If it pointed directly to
the left, its angle would be 180.0 degrees.  Thus, an angle of 170.2 degrees points almost directly to the
left, but just a little up.  In addition, the magnitude is twice that of the first vector, so the arrow is twice
as long as the first.

Adding the vectors is now a snap.  We just draw an arrow from the tail of the first to the head
of the second.

The arrow labeled C represents the sum of the two vectors.

Now, although that gives us a picture of the vector which represents the explorer’s final
position, it is only a picture.  To get numbers which describe this vector, we must add the two vectors
mathematically.  To do that, we must get the horizontal and vertical components of each vector and add
them together.  Figure 1.2 gives the relationships between the components of a vector and its magnitude
and direction, so that’s not too bad:

Ax = (15.2 miles)⋅cos(30.0) = 13.2 miles

Ay = (15.2 miles)⋅sin(30.0) = 7.60 miles

Bx = (30.4 miles)⋅cos(170.2) = -30.0 miles

By = (30.4 miles)⋅sin(170.2) = 5.17 miles

Notice that I used the rules of significant figures here.  If you have forgotten those rules, go back to your
first-year physics course (or chemistry if you took that course) and review significant figures so that you
understand why I rounded the answers where I did.

To get the x-component of the sum (vector C), we just add the two x-components together,
and to get the y-component of the sum, we just add the two y-components together.

30.0o

30.0o

170.2o

170.2o

A

B

A

B

C
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Cx = Ax  +  Bx  =  13.2 miles  +  -30.0 miles = -16.8 miles

Cy = Ay  +  By  = 7.60 miles + 5.17 miles = 12.77 miles

In this case, I had to add numbers, and the significant figure rules are different for addition and
subtraction as compared to multiplication and division.  Make sure you remember the difference!

The answer, then, is that the explorer’s position has an x-component of -16.8 miles and a y-
component of 12.77 miles.  This means the explorer is 16.8 miles left (west) of his starting position and
12.77 miles up (north) from his starting position.

Before I leave this review, there is one more important thing of which I must remind you.  When
dealing with the angle associated with a vector, you need to define the angle counterclockwise from
the positive x-axis, as shown in the example above.  If you define the angle in that way, the
mathematics will always work.  Thus, if you find yourself working with a vector whose angle is not
defined in that way, change the angle so that it is defined properly.

If you have the components of a vector and need to get its magnitude and its angle, you can use
the equations given in Figure 1.2.  Remember, however, that the angle needs to be defined
counterclockwise from the positive x-axis.  How can you be sure it is defined properly when working
with those equations?  Well, remember from algebra that you can divide the Cartesian coordinate plane
into four regions:

When taking the inverse tangent of a number, the definition of the angle that your calculator gives you
depends on which of these regions the vector is in.  If the vector is in region I, the angle that your
calculator gives you is defined relative to the positive x-axis, just as it should be defined.  Thus, if your
vector is region I, the angle that your calculator gives you for the inverse tangent function will be defined
properly.

However, if the vector is in region II of the Cartesian coordinate plane, then the angle that your
calculator gives you is defined relative to the negative x-axis and is negative.  In the Cartesian coordinate
system, negative angles mean clockwise rotation while positive angles mean counterclockwise rotation.
So, when a vector is in region II, your calculator gives you the number of degrees clockwise from the
negative x-axis.  Thus, if your vector is in region II and your calculator gives you a direction of -60 o,
this is what it means:

I

IV

II

III
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This definition of angle is not proper for our purposes.  As a result, we must convert it to the proper
definition.  It turns out that in both regions II and III of the Cartesian coordinate plane, if you simply add
180 to the angle that your calculator gives you, you will have converted your calculator’s answer to an
answer in which the angle is defined properly.  If the vector is in region IV, then you must add 360 to
the calculator’s answer in order to get the properly defined angle.

In summary, Figure 1.4 tells you what you must do in order to change your calculator’s answer
into a properly defined vector angle, based on the region of the Cartesian coordinate system:

FIGURE 1.4
Converting reference angle to vector angle

This figure, of course, does you no good if you can’t tell what region of the Cartesian coordinate
plane your vector is in.  Luckily, however, this is not a difficult task.  All you have to do is look at the
signs on the vector components.  If the x-component and y-component are both positive, then the
vector must be in region I.  After all, a positive x-component indicates that you are to the right of the
origin, while a positive y-component means you are above the origin.  The region that is both to the right
and above the origin is region I.  On the other hand, suppose that both components are negative.  Since
a negative x-component means left of the origin and a negative y-component means down, you must be
in region III, since that is the only region that is to the left and below the origin.  See how you do this?
Following the same logic, if the x-component is negative and the y-component is positive, you must be
in region II.  If the x-component is positive and the y-component is negative, however, you must be in
region IV.

I want to make sure you understand this by showing you a quick example.

EXAMPLE 1.6

What are the magnitude and direction of vector C in the previous example?

do
nothing

+360.0

+ 180.0

+180.0

θ  = -60o
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In the previous example, C had an x-component of -16.8 miles and a y-component of 12.77
miles.  Getting the magnitude is simple, given the equation in Figure 1.2.

C C C miles miles milesx y= = = − + =2 2 2 2168 12 77 211( . ) ( . ) .

Getting the angle is a bit more difficult, because it must be defined properly.  When we use the equation
in Figure 1.2, we get:

θ =
−

= −−tan (
.

.
) .1 12 77

168
37 2

miles
miles

o

Now that we have an answer, we must figure out the region of the vector.  It has a negative x-
component (and is therefore left of the origin) and a positive y-component (and is therefore above the x-
axis).  Thus, it is in region II.  According to Figure 1.4, then, we must add 180.0 to it.  The properly-
defined angle, then, is 142.8o.  Thus vector C can also be represented as 21.1 miles at an angle of
142.8o.

I went through all of this rather quickly, but it should be review for you.  You really should have
learned all of this in your first-year course.  Thus, if all of this seems a bit “fuzzy” to you, go back and
review your first-year physics course.

ON YOUR OWN

1.4  The velocity vector of a car has an x-component of 23 m/sec and a y-component of 11 m/sec.
What are the magnitude and direction of the velocity vector?

1.5  Vector  A has a magnitude of 3.1 m/sec at an angle of 60.0 degrees, and vector B has a magnitude
of 1.4 m/sec at an angle of 290.0 degrees.  What is the sum of these two vectors?  Give your answer
both graphically and in terms of magnitude and direction.

Unit Vectors

Everything in the previous section should be review for you, and that’s why I went through it so
quickly.  However, I now want to introduce some notation that may be new for you.  Since a two-
dimensional vector can be represented in terms of its horizontal and vertical components, it is nice to
actually define two unit vectors  – one in the horizontal direction and one in the vertical direction.  A
unit vector, as shown in the figure below, has a magnitude of 1 and a direction along either the horizontal
(x) or vertical (y) axis.
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FIGURE 1.5
Two Unit Vectors

Why do I bother to define these vectors?  Think about it.  I can define any vector in terms of a
horizontal component and a vertical component.  Well, suppose I multiply vector i by a scalar.  What
will happen to the magnitude of the vector?  Well, since the original magnitude is 1, the new magnitude
will be equal to the value of the scalar.  What about the direction?  Well, unless the scalar is negative,
the direction will not change.  If the scalar is negative, the direction will simply be reversed.  The vector
3⋅i, for example, has a magnitude of 3 and points horizontally to the right.  The vector -5⋅j, on the other
hand, has a magnitude of 5 and points vertically down.

So what?  Think about the fact that we can define a vector by its horizontal and vertical
components.  Suppose velocity vector A has a horizontal component of 5 m/sec (Ax = 5 m/sec) and a
vertical component of -4 m/sec (Ay = -4 m/sec).  We could write that in terms of adding unit vectors:

A = (5 m/sec)⋅i  +  (-4 m/sec)⋅j

After all, if the x-component is 5 m/sec, then the x-component points to the right and has a magnitude of
5.  That’s what 5⋅i is.  If the y-component is -4 m/sec, then the y-component points down with a
magnitude of 4 m/sec.  That’s what -4⋅j means.  In the end, then, we can also note any vector in terms
of unit vectors:

For any vector A,   A = Ax⋅i  +  Ay⋅j                                          (1.1)

This is one of the standard ways in which vectors are expressed, so it is important that you understand
it.

EXAMPLE 1.7

The acceleration vector of an airplane is 123 m/sec2 at θθ = 223.2o.  Express the vector in
terms of unit vectors.  Draw a graph of the vector.

Vector j:
j = 1, θ = 900

jx = 0, jy = 1

Vector i:
i = 1, θ = 00

ix = 1, iy = 0
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To express a vector in terms of unit vectors, we must have its horizontal and vertical
components.  Thus, we must convert magnitude and direction into components:

A
m m

A
m m

x
o

y
o

= ⋅ = −

= ⋅ = −

(
sec

) cos ( . ) .
sec

(
sec

) sin( . ) .
sec

123 2232 89 7

123 2232 84 2

2 2

2 2

Now that we have the components, we just multiply i by the x-component and j by the y-component,
and we can express the vector in terms of unit vectors:

A i j= − ⋅ + − ⋅89 7 84 22 2.
sec

( .
sec

)
m m

Usually, if the vector j is multiplied by a negative, we just replace the plus sign with a minus sign, so the
more standard answer is:

A i j= − ⋅ − ⋅89 7 84 22 2.
sec

.
sec

m m

 Now remember, the numbers multiplying i and j are simply the components of the vector.  Thus,
drawing the vector is a snap:

Now remember that to add any two vectors, you simply add the x-components together and
the y-components together.  Similarly, to subtract vectors, you simply subtract the x-components  and
the y-components.  In this notation, then, vector addition and subtraction is as follows:

A  +  B  =  (Ax + Bx)⋅i  +  (Ay + By)⋅j                                  (1.2)

A  -  B   =  (Ax - Bx)⋅i   +   (Ay - By)⋅j                                  (1.3)

We can also express scalar multiplication in this notation.  When I multiply a vector by a scalar, I can
simply multiply each component by the scalar.  Thus, in this notation, scalar multiplication becomes:

-89.7
m/sec2

-84.2
m/sec2

A
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k⋅A  =  (k⋅Ax)⋅i  +  (k⋅Ay)⋅j        (where k is a scalar)      (1.4)

Make sure you understand this new notation by solving the following problems.

ON YOUR OWN

1.6  Draw the vector A = (5.0 m)⋅i  - (11 m)⋅j.  Give its magnitude and direction.

1.7  What is the sum of vector A above with vector B = (-11 m)⋅i  +  (22 m)⋅j?  What is the difference
A - B?  Answer using the notation you learned in this section of the module.

1.8  Write (in unit vector notation) the vector which corresponds to 6 times the vector
C = (2.0 m/sec)⋅i  +  (3.0 m/sec)⋅j.

The Dot Product

When we add or subtract two vectors, the result is a vector.  When we multiply a vector by a
scalar, the result is also a vector.  Thus, you might think that when you mathematically manipulate
vectors, the result is always a vector.  That’s not true.  One mathematical manipulation is called the dot
product, and it is important in physics.  When you compute the dot product of two vectors, the result is
a scalar.

How can two vectors produce a scalar?  Well, first let’s look at the mechanics of taking the dot
product of two vectors, and then I will tell you what the dot product really means.

A • B  =  Ax⋅Bx  +  Ay⋅By                                             (1.5)

In order to compute the dot product of two vectors, I multiply their x-components together and add that
result to the product of their y-components.  Notice that there are no vectors on the right hand side of
the equation, so the result is, indeed, a scalar.

EXAMPLE 1.8

Given the following vectors:

A =  14⋅i  +  11⋅j
B =  -2.0⋅i  + 3.0⋅j

Compute the dot product A ••  B.
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Using Equation (1.5):

A • B  =  Ax⋅Bx  +  Ay⋅By

A • B  =  14⋅(-2.0)  +  11⋅3.0  =  -28  +33  =  5

The dot product, then, equals 5.

Computing the dot product between two vectors isn’t too bad, is it?  Of course, being able to
perform a mathematical operation is not the same as understanding what that mathematical operation
means.  Thus, you also need to know the meaning behind the dot product.  When you take the dot
product of two vectors, you are really multiplying the magnitude of the first vector by the component of
the second vector which is parallel to the first vector.  Now I know that sentence is confusing, so I
want to try and explain it with a figure.

FIGURE 1.6
The Meaning of the Dot Product

Start by looking at the drawing on the left-hand side of the figure.  I have two vectors there, our
old friends A and B.  If you put their tails together (remember, moving vectors around is okay as long as
you don’t change length or direction), you can define θ, the angle between them.  Now we already
know that any two-dimensional vector can be expressed in terms of two perpendicular components.
We usually use the horizontal and vertical components, but that’s not necessary.  We can really use any
two perpendicular components.  For the purpose of this discussion, then, let’s define B in terms of a
component that is parallel to A and one that is perpendicular to A.  That’s what is shown on the right
hand side of the figure.

Now look what happens when you split up B into those two components.  One component lies
right on vector A.  That’s the parallel component of vector B, and it is calculated by taking the
magnitude of the vector (B) and multiplying by the cosine of the angle (θ).  Thus, that little section
labeled B⋅cosθ is the component of vector B that lies parallel to vector A.

A

B

θ

A

B

θ

B⋅cosθ

B⋅sinθ

Two vectors,
A and B:

Vector B can be split into
two perpendicular
components: one that is
parallel to A and one that is
perpendicular to B:

A•B = A[Bcos(θ)]
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When you take the dot product, you are calculating the value of the magnitude of vector A
multiplied by the length of the component of vector B which lies parallel to A.  That’s why the last line
of text in the figure says that the dot product is A (the magnitude of vector A) times Bcosθ (the length of
the component of B which is parallel to A).  This is actually another way of expressing the dot product:

A • B  =  A⋅B⋅cosθ                                                 (1.6)

The dot product of two vectors, then, can be found one of two ways.  If you know the components of
the vector, you use Equation (1.5).  If you know the magnitudes of each vector and the angle between
them, use Equation (1.6).  Alternatively, if you know the dot product and magnitudes of the vectors, you
can determine the angle between them.  See what I mean by studying the following example.

EXAMPLE 1.9

Given the following vectors:

A = 12i  +  6.0j
B = -3.0i  +  9.0j

Determine the angle between the vectors.

To get an idea of just what we are solving for, let’s draw the two vectors with each tail at the
origin.  This is not a necessary step for solving the problem.  It simply gives us a visual of the angle.

How do we determine the angle?  Well notice that we have the components of each vector.  Thus, we
can determine the magnitude of each.  Also, we can determine the dot product using Equation (1.5).
Once we have that, then we can solve for the angle using Equation (1.6).

Let’s start with the magnitudes of each vector.  That’s not too hard:

A

B

= + =

= − + =

12 6 0 13

30 9 0 9 5

2 2

2 2

.

. . .

θ
AB
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Now let’s figure out the dot product.  Since we have the components, we use Equation (1.5):

A•B  =  12⋅(-3.0)  +  6.0⋅9.0  =  18

At this point, we have all of the information in Equation (1.6) except the angle, so we can solve for it:

A B• = ⋅ ⋅

= ⋅ ⋅

=
⋅





 = =− −

A B

o

cos

. cos

cos
.

cos ( . )

θ

θ

θ

18 13 95

18
13 95

015 821 1

The angle, then, is 82o.  Look back at the drawing of the two vectors.  Notice that the angle looks very
close to a right angle.  Thus, the answer we have makes sense based on the drawing.

ON YOUR OWN

1.9  Compute the dot product of the following vectors:  A  =  (-2.3 m)⋅i  -  (1.2m)⋅j,
B  =  (1.2 m)⋅i  +  (4.3 m)⋅j.

1.10  Two vectors, A and B, are defined.  The angle between them is 61.0o.  Vector A has a magnitude
of 15.1 meters, and the component of B which is parallel to A is 1.2 meters long.  What is the
magnitude of vector B?

The Physical Significance of the Dot Product

In the last section, you learned how to compute the dot product of two vectors and what that
means mathematically.  However, this is a physics course.  It might be nice to learn a new math concept,
but this is not a math course.  Thus, I would not have taught you about the dot product unless there was
some physics behind it.

To learn the physics behind the dot product, you need to recall the concept of work from your
first-year physics course.  Do you remember how we define work mathematically?  Try to see if this
doesn’t jog your memory:

W  =  F|| ⋅x                                                            (1.7)
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In this equation, “W” represents work , “x” stands for the displacement over which the force was
applied, and “F|| ” is used to indicate the component of the force vector that is parallel to the direction of
motion.

To remember why Equation (1.7) uses only that portion of the applied force that is parallel to
the motion, consider Figure 1.7.

FIGURE 1.7
Force and Work

                            

In the left side of this figure, a boy is pulling a wagon.  If we remove the picture of the boy (right side of
the figure) and just look at the vectors involved, we see several things.  First, the wagon travels in a
straight, horizontal line, as indicated by the horizontal velocity vector (v).  The force that the boy is
applying (F) goes in the same direction as the wagon’s handle.  As a result, his pulling force is not
parallel with the motion.  Since the force is a two-dimensional vector, we can split it into vertical (Fy)
and horizontal (Fx) components.  The horizontal component is parallel to the motion and, as you can
see, is the only portion of the force that contributes to the motion.  In contrast, there is no motion in the
perpendicular direction.  In other words, the wagon is not moving upwards.  In the end, the
perpendicular portion of the force fights gravity.  Since it is not strong enough to overcome gravity, the
wagon does not move up.  Remember, when a force is applied but there is no motion, there is no work.
Thus, the perpendicular component of the boy’s pulling force is wasted.  It causes no motion, and
therefore it accomplishes no work.  That’s why only the portion of the force parallel to the motion is
considered when calculating the work done by that force.

So, when you are faced with a situation in which you must calculate the work done by a force
which takes place over a certain displacement, you can use Equation (1.7).  Wait a minute, however.
Equation (1.7) tells you to take the magnitude of one vector (the displacement vector, x), and multiply it
by the magnitude of the component of another vector (the force vector, F) which is parallel to the first
vector.  What does that sound like?  It sounds like the dot product!  Thus, we can re-write the
definition of work in dot product notation:

W  =  F••x                                                           (1.8)

⇒

v

F

Fx

Fy
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Now remember, work is a scalar.  It doesn’t tell us anything about direction.  That makes sense, since
the result of the dot product is a scalar.

If you have been paying close attention, there may be something puzzling you at this point.  In
the dot product, we take the magnitude of the first vector, and multiply it by the magnitude of the
component of the second vector which is parallel to the first vector.  Thus, if I were to really write
Equation (1.7) in dot product form, it should read W=x•F.  However, look at Equation (1.6).  This
equation tells us that the dot product is commutative.  After all,

A•B  =  A⋅B⋅cosθ

B•A  =  B⋅A⋅cosθ

Notice that A⋅B⋅cosθ and B⋅A⋅cosθ are equivalent.  Thus, A•B and B•A are equivalent.  Thus, the
order in which you take the dot product does not matter.

The dot product is commutative:  A••B is the same as B••A

This is important and worth remembering.

Now that you know the physical significance of the dot product, solve the following “on your
own” problems.

ON YOUR OWN

1.11  A particle undergoes a displacement x = (1.5 m)⋅i - (2.3 m)⋅j while being acted upon by a
constant force F = (5.6 N)⋅i - (3.4 N)⋅j.  What is the work done?

1.12  A person applies a force of 16.6 Newtons to an object as the object travels 9.2 meters.  If the
work done was 14.5 J, what was the angle between the force vector and the displacement vector?

The Cross Product

The dot product of two vectors produces a scalar.  It only makes sense that if there is a way to
multiply two vectors to produce a scalar, there must be a way to multiply two vectors to produce a
vector.  Indeed, there is.  We call it the cross product.  In the cross product, we are still multiplying the
magnitude of one vector with the magnitude of another vector.  In this case, however, we are multiplying
the magnitude of the first vector with the component of the second vector which is perpendicular to the
first vector.  In addition to using a different component of the second vector, the cross product also
produces a vector, not a scalar.  Thus, the cross product has both magnitude and direction.  Let’s deal
with the magnitude first.



Module 1        Units and Vectors Revisited        21

FIGURE 1.8
The Magnitude of the Cross Product

Once again, we have our old friends vector A and vector B.  They can be drawn tail-to-tail,
and the resulting angle between them is called θ.  If we split vector B into two components: one parallel
to A and one perpendicular to A, we find that the perpendicular component is B⋅sinθ.  Thus, since the
cross product involves multiplying the magnitude of the first vector and the magnitude of the component
of the second vector which is perpendicular to the first, the magnitude of the cross product is:

|A x B|  = A⋅B⋅sinθ                                                       (1.9)

The vertical lines enclosing A x B simply mean “magnitude.”  Thus, “|A x B|” means “the magnitude of
the vector A x B.”

So that’s how we get the magnitude of the cross product.  The cross product produces a
vector, however, so there is also direction to consider.  How do we come up with the direction of the
cross product?  We use something called the right hand rule.

   Right hand rule - To determine the direction of the cross product A x B, take your right hand and
point your fingers in the direction of A.  Then, curl your fingers towards B, along
the arc of the angle between the vectors.  Your thumb will then point in the
direction of the cross product

The right hand rule is illustrated in Figure 1.9.

A

B

θ

A

B

θ

B⋅cosθ

B⋅sinθ

Two vectors,
A and B:

Vector B can be split into
two perpendicular
components: one that is
parallel to A and one that is
perpendicular to B:

|A x B| = A[Bsin(θ)]



22           Advanced Physics in Creation

FIGURE 1.9
The Right hand Rule

When determining the direction of the cross product, then, you take your right hand and point
your fingers in the direction of the first vector.  Then, you curl your fingers towards the second vector,
along the arc of the angle between them.  Your thumb will then point in the direction of the cross
product.  Think about what this means for a moment.

The direction of the cross product of two vectors will always be perpendicular to both vectors.

The right hand rule has another implication.  Look at Figure 1.9 and use the right hand rule to determine
the direction of B x A.  Remember, you point the fingers on your right hand in the direction of the first
vector (B), and you then curl towards the second vector (A).  Where does your thumb point?  It
points down towards the paper.  That’s the opposite direction as that shown in the figure.  Thus, unlike
the dot production, the cross product is not commutative.

The cross product is not commutative: A x B = -(B x A)

This is important to remember.

Okay, there is one more thing you need to learn about the cross product.  You need to know
how to calculate the cross product using unit vector notation.  However, before you can do that, you
need to see how we define unit vectors in three-dimensional space.

Point the fingers of
your right hand in the
direction of the first
vector.

Curl your fingers along
the arc of the angle
between the vectors.

Your thumb points in
the direction of the
cross product.

In this example, the
thumb pointed up out
of the page.  That’s the
direction of the cross
product.

direction of the
cross product.

Illus. By Megan Whitaker
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FIGURE 1.10
Three-Dimensional Space in Terms of Unit Vectors

When we add another dimension (the z-axis), we can represent that in unit vector notation with just
another unit vector.  Notice that i is still the unit vector in the horizontal direction and j is still the unit
vector in the vertical direction.  To represent three-dimensional space, then, we simply add a third unit
vector, k, which points out of the plane of the paper, towards you.  If we multiply by -1, the unit vector
-k points behind the paper.

Now that you know how three-dimensional space is represented in vector notation, you can
learn how we compute the cross product.  First, let’s start with the simple case of two-dimensional
vectors.

For two-dimensional vectors in the i/j plane:  A x B  =  (Ax⋅By - Ay⋅Bx)⋅k             (1.10)

Notice the restriction placed on this equation.  To use this equation, you must be taking the cross
product of two-dimensional vectors which exist only in the plane defined by the horizontal (i) and
vertical (j) axes.  Thus, this is a pretty restrictive equation.  However, most of the physics problems that
you do will involve such vectors, so it is probably what you will use most often for calculating cross
products.

For completeness sake, I will give you the total equation for calculating the cross product
between any three-dimensional vectors:

A x B  =  (Ay⋅Bz-Az⋅By)⋅ i  +  (Az⋅Bx - Ax⋅Bz)⋅j  + (Ax⋅By - Ay⋅Bx)⋅k           (1.11)

Notice that Equation (1.11) reduces to Equation (1.10) for two-dimensional vectors in the i/j plane.
After all, the z-component of such a two-dimensional vector is zero.  Thus, the term (Ay⋅Bz-Az⋅By)⋅ i is
zero, as is the term (Az⋅Bx - Ax⋅B z)⋅j.  As a result, the only term in the equation that is non-zero is (Ax⋅By

- Ay⋅Bx)⋅k, and that gives us Equation (1.10).

I know that this is a lot to throw at you, but hopefully the following example problems will clear
up any confusion that may still be in your mind.

i

j

k
x

y

z
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EXAMPLE 1.10

A velocity vector has a magnitude of 56.1 m/sec and an angle of 45.0 degrees.  Another
velocity vector has a magnitude of 12.2 m/sec and an angle of 290.1 degrees.  Calculate the
magnitude of the cross product and give the vector in unit vector notation.

Calculating the magnitude of the cross product is not bad at all.  We just use Equation (1.9).  To
do that, however, we need the angle between the vectors.  To determine that we will have to draw the
two vectors:

If the angle of the second vector as defined from the positive x-axis is 290.1, then the angle from the
positive x-axis down to the vector must be 69.9o, because the total angle must be 360.0o.  Well, the
angle from the positive x-axis up to the first vector is 45.0o.  The angle between the two vectors, then,
must be 69.9o + 45.0o = 114.9o.   Now we can use Equation (1.9):

|A x B|  = A⋅B⋅sinθ = (56.1 m/sec)⋅(12.2 m/sec)⋅sin(114.9o) = 621 m2/sec2

The magnitude of the cross product, then, is 621 m2/sec2.

What about the direction?  For that, we use the right hand rule.  We point the fingers of our right
hand in the direction of the first vector, then we curl along the arc of the 114.9o angle in between the
vectors.  When we do that, our thumb points down into the page.  Thus, the vector is in the negative k
direction.  That tells us what we need to know for unit vector notation.  After all, we know the vector’s
magnitude (621 m2/sec2), and we know that it is pointed in the negative k direction.  Thus, the vector is
-(621 m2/sec2)⋅k.

Given the following vectors, calculate A  x  B and determine the angle between the vectors:

A  =  3.4⋅i  +  4.5⋅j
B  =  2.4⋅i  +  1.1⋅j

45.0o290.1o

360.0o - 290.1o = 69.9o
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Notice that these two vectors are two-dimensional and have only i and j unit vectors.  Thus,
they are in the i/j plane, and we can use the simpler version of the cross product equation, Equation
(1.10):

A x B  =  (Ax⋅By - Ay⋅Bx)⋅k

A x B  =  [3.4⋅1.1 - 4.5⋅(2.4)]⋅k  =  -7.1⋅k

That’s the cross product.  Based solely on the unit vector notation, you know that it is pointing behind
the plane of the paper.  What about the angle?  Well, we now know the magnitude of the vector (if the
vector is composed solely of 7.1 times k, then the magnitude is 7.1, because k has a magnitude of 1),
so we can use Equation (1.9):

|A x B|  = A⋅B⋅sinθ

Remember, “|A x B|” means “magnitude of A x B,” so that’s 7.1.  We don’t have the magnitudes of A
and B, but we can use their components to calculate them:

A

B

= + =

= + =

34 45 56

2 4 11 26

2 2

2 2

. . .

( . ) . .

Now we can use Equation (1.9):

| | sin

. ( . ) ( . ) sin
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.

( . ) ( . )

A Bx A B

o

= ⋅ ⋅
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=
⋅
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θ

θ

θ

71 56 2 6
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56 2 6
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Given the following vectors, calculate the cross product and the angle between them:

A = -1.4⋅i  +  4.2⋅j -  5.6⋅k
B  =  2.4⋅i  -  1.1⋅j  +3.2⋅k

This is essentially the same as the problem above.  However, these are three-dimensional
vectors, so we have to use the larger formula, Equation (1.11):

         A x B  =  (Ay⋅Bz-Az⋅By)⋅ i  +  (Az⋅Bx - Ax⋅Bz)⋅j  + (Ax⋅By - Ay⋅Bx)⋅k

A x B  =  (4.2⋅3.2-[-5.6]⋅[-1.1])⋅ i  +  (-5.6⋅2.4 - [-1.4]⋅3.2)⋅j  + ([-1.4]⋅[-1.1] - 4.2⋅2.4)⋅k

         A x B  =  7.2⋅ i  -  8.9⋅j  - 8.6⋅k
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Just as we did before, we can calculate the magnitudes of the two vectors and then determine
the angle between them using Equation (1.9).  The only difference now is that the magnitude of the cross
product is not as easy to determine.  We must calculate it like we calculate the magnitudes of all vectors:

A

B

x

= − + + − =

= + + =

= + − + − =

( . ) . ( . ) .

. . . .

| | . ( . ) ( . )

14 4 2 56 71

2 4 11 32 41

7 2 8 9 8 6 14

2 2 2

2 2 2

2 2 2A B

Now that we have all of the magnitudes involved, we can use Equation (1.9):
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ON YOUR OWN

1.13  Vector A is defined as 3.2 feet at 45.1o, and vector B is defined as 1.1 feet at 70.1o.  What is the
cross product?  Give your answer in unit vector notation.

1.14 Given the following vectors, calculate the cross product and the angle between them:

A = -7.1⋅i  +  4.2⋅j
B  =  3.4⋅i  -  4.1⋅j

The Physical Significance of the Cross Product

As was the case with the dot product, there is physical significance to the cross product.  We
will apply the cross product in at least three different areas of physics, but for right now, I will
concentrate on only one: the concept of torque .  As you learned in your first-year physics course, when
we apply a force some distance away from an axis of rotation, the result is a torque, which can cause
rotational motion.  In your first-year physics course, you learned the equation used to calculate torque.

τ  =  F⊥⋅r                                                       (1.12)
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Where “τ” represents torque, “r” represents the magnitude of the vector drawn from the axis of rotation
to the point at which the force is applied, and “F⊥” represents the component of the force which is
perpendicular to that vector.  Figure 1.11 illustrates the concept of torque.

FIGURE 1.11
Torque

Now remember what torque is.  It is the counterpart of force when one is considering
rotational motion.  Remember, force causes acceleration in a straight line.  Torque causes rotational
acceleration.  In the figure, the wrench is going to turn the screw.  To do that, it will have to give the
screw rotational acceleration so that it starts to turn in a circle.  Torque is the impetus which will cause
that rotational acceleration.

Notice from the figure that only a portion of the force used can generate torque.  Any
component of the force that is parallel to the vector defined from the axis of rotation to the point at
which the force is applied (the lever arm) is lost.  Thus, the magnitude of the torque is given by the
magnitude of the lever arm times the component of the force which is perpendicular to the lever arm.

Well, since the cross product takes the magnitude of a vector and multiplies it by the magnitude
of a second vector’s component which is perpendicular to the first vector, torque can be calculated
using the cross product.

ττ   = r x F                                                               (1.13)

There are two things to note about this equation.  First, torque is a vector.  Remember, the cross
product results in a vector.  That’s why the “ττ” is bold.  Second, remember that the cross product is

F

F||

F⊥

lever arm
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NOT commutative.  Thus,  the order of the vectors is important, so one must take the vector of the
lever arm (r) and cross it with the vector representing the force (F), in that order.

Since you already know how to do cross products, calculating the torque is pretty easy.  Thus, I
will not give you any examples of it.  However, you should perform the following “on your own”
problems to make sure you understand how to use the cross product to calculate torque.

ON YOUR OWN

1.15  A person applies a force F = (15 N)⋅i + (23 N)⋅j on a lever arm r = (1.2 m) ⋅⋅i + (1.1 m)⋅j.  What
is the vector that represents the torque?

1.16  A man is trying to turn a bolt.  He exerts a force of 15.2 N with a pipe that creates a lever arm
which is 0.36 m long.  If the plumber succeeds in producing 4.9 N⋅m of torque, what is the angle
between the force he is exerting and the wrench?  Given the diagram below, is the torque pointing up
above the plane of the paper or back behind the plane of the paper?

  

Summing Up

This module contained some concepts which were review for you and others which were new.
That will be the case with most of the modules in this course.  In each module, I will review some of the
highlights of your first-year physics course and then go deeper into each subject.  In addition,
completely new concepts will be brought in from time to time.  Thus, if there is something that really
baffles you in this course, you should review your first-year course to see if it is explained there.

r

F
θ
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ANSWERS TO THE ON YOUR OWN PROBLEMS

1.1  To solve this problem, we simply have to convert miles to centimeters and hours to seconds.   It
doesn’t matter that they are both a part of our original unit.  As long as we use the factor-label method,
everything will work out:

65
1

1609
1

1
0 01

1
3600

2900
miles
hour

m
mile

cm
m

hour
s

cm
s

× × × =
.

Notice that I converted from miles to meters and then meters to centimeters.  I had to do that, since I
was not given a direct relationship between miles and centimeters.  Sixty-five miles per hour is the same
as 2900 cm/s.

1.2  We can’t use the conversion of 3 feet in 1 yard right away, because we want to convert from
square feet into square yards.  Thus, we need a relationship between those quantities.  We can get such
a relationship by squaring both sides of the relationship that we do have:

       3 ft  =  1 yd

9 ft2  =  1 yd2

Now we can do the conversion:

1600
1

1
9

180
2 2

2
2ft yd

ft
yd× =

The house has an area of 180 square yards.  If your answer was 177.8, go back and review significant
figures from your first-year course.

1.3  To convert from Joules (
kg m⋅ 2

2sec
) to ergs  (

g cm⋅ 2

2sec
), I need to convert kg into g and m2 into cm2.

That’s not bad.  We know that 1 kg = 1,000 g.  We also know:

1 cm = 0.01 m

To get the relationship between cm2 and m2, we just square both sides:

1 cm2 = 0.0001 m2

This leads us to:

151

1

1000
1

1

00001
151 10

2

2

2

2
9

2

2

kg m g
kg

cm

m
g cm⋅

× × = ×
⋅

sec

,

.
.

sec
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1.4  In this problem, we are given the x- and y-components of a vector and are asked to calculate its
magnitude and direction.  Getting the magnitude is not too bad:

Magnitude V V
m m m

x y= + = + =2 2 2 223 11 25(
sec

) (
sec

)
sec

To get the angle, we start with this equation:

θ = = =− −tan ( ) tan ( sec

sec

)1 1
11

23
26

V

V

m

m
y

x

o

We aren’t necessarily finished yet, however.  We have to determine which region of the Cartesian
coordinate system that the vector is in.  Since both its components are positive, this tells us that the
vector is to the right and above the origin, which means that the vector is in region I.  According to our
rules, we don’t need to do anything to the result of the equation when the vector is in region I, so 26o is
the proper angle.  Thus, the vector has magnitude of 25 m/sec and direction of 26o.

1.5   In this problem, we are asked to add two-dimensional vectors together.  Before we do this
mathematically, let’s do it graphically:

As we learned before, the dotted arrow (vector C) gives us the sum.

The first step in adding vectors mathematically is to break both vectors down into their
components:

                                          

A
m m

A
m m

x
o

y
o

= ⋅ =

= ⋅ =

( .
sec

) cos( . ) .
sec

( .
sec

) sin( . ) .
sec

31 600 16

31 600 2 7

A B

C
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B
m m

B
m m

x
o

y
o

= ⋅ =

= ⋅ = −

( .
sec

) cos ( . ) .
sec

( .
sec

) sin( . ) .
sec

14 290 0 048

14 290 0 13

Now that we have the individual components, we can add them together.

C   =   A   +   B   =   1.6  
m
sec

  +   0.48  
m
sec

  =   2.1  
m
sec

C   =   A   +   B   =   2.7  
m
sec

  +   -1.3  
m
sec

  =   1.4  
m
sec

x x x

y y y

Now that we have the components to our answer, we can get the magnitude and direction of the sum.

Magnitude C C
m m m

x y= + = + =2 2 2 221 14 2 5( .
sec

) ( .
sec

) .
sec

θ = = =− −tan ( ) tan (
.

sec

.
sec

)1 1
14

21
34

C

C

m

m
y

x

o

Since the x- and y-components are both positive, the vector is in the first region of the Cartesian
coordinate plane.  This is consistent with the graphical answer we drew to begin with, and it means that
we do not need to do anything to the result the equation.  Thus, the sum of vectors A and B has a
magnitude of 2.5 m/sec at a direction of 34o.

1.6  To draw the vector, we simply need to realize that the number multiplying i is the x-component and
the number multiplying j is the y-component.

11 m

5.0 m

A
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To get the magnitude and direction, we just use the formulas in Figure 1.2.

A A A m m m

m
m

x y

o

= + = + − =

=
−






 = −−

2 2 2 2

1

50 11 12

11
50

66

( . ) ( )

tan
.

θ

Now remember, the angle may not be defined correctly at this point.  Based on the components, we see
that this vector is in region IV of the Cartesian coordinate plane.  Thus, we must add 360.0o to it.  Thus,
the answer is 12 m at a direction of 294o.

1.7  To add vectors, we add the x-components and y-components.  In unit vector notation, the formula
is given by Equation (1.2):

A  +  B  =  (Ax + Bx)i  +  (Ay + By)j  =  (5 m  + -11 m)i  +  (-11 m + 22m)j  =  (-6 m)i  +  (11 m)j

The difference is given by Equation (1.3):

 A  -  B   =  (Ax - Bx)i   +   (Ay - By)j  =  (5 m - -11m)i  +  (-11 m - 22 m)j  = (16 m)i  -  (33 m)j

1.8  In unit vector notation, scalar multiplication is given by Equation (1.2):

kA  =  (kAx)i  +  (kAy)j

6C  =  (6x2.0 m/sec)i  +  (6x3.0 m/sec)j  =  (12 m/sec)i  +  (18 m/sec)j

1.9  Using Equation (1.5):

        A • B  =  Ax⋅Bx  +  Ay⋅By

A • B  =  (-2.3 m)⋅(1.2 m)  +  (-1.2 m)⋅(4.3 m)  =  -8.0  m2

The dot product, then, equals -8.0 m2.  What does the minus sign mean?  Well, remember, the dot
product is the product of the magnitude of A and the magnitude of the component of B parallel to A.  If
that product is negative, it means the component of B parallel to A is negative.  That means the
component of B parallel to A points opposite of A.  Draw the two vectors to see what I mean:

Component of B parallel to A
points in the opposite direction
compared to A.  Thus, compared to
A, it is negative.  This leads to a
negative dot product.

A
B
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1.10  This problem requires you to understand that the dot product A•B is the magnitude of A times the
magnitude of the component of B which lies parallel to A.  You are given those two things, so you can
compute the dot product:

A B A B A

A B

• = ⋅

• = ⋅ =

( ) ( )

( . ) ( . )

magnitude of magnitude of the component of parallel to

m m m151 12 18 2

Now that we have the dot product, we can solve Equation (1.6) for the magnitude of  B.

A B• = ⋅ ⋅

= ⋅ ⋅

=
⋅

=

A B

m m B

B
m

m
m

o

o

cos

( . ) cos( . )

( . ) cos( . )
.

θ

18 151 610

18
151 610

25

2

2

1.11  This is a straightforward application of Equation (1.8):

 W  =  F • x  =  (5.6 N)⋅(1.5 m)  +  (3.4 N)⋅(2.3 m)  =  16.2 N⋅m  =  16.2 J

Remember from your first-year course that a N⋅m is the standard unit for energy or work, and that unit
is called the Joule in honor of James Prescott Joule.

1.12  Remember, work is the dot product of F and x.  Thus,

W = F⋅x⋅cosθ

In this problem, we have all of the variables except θ, so we can solve for it:

W F x

J N m

= ⋅ ⋅

= ⋅ ⋅

cos

. ( . ) ( . ) cos

θ

θ14 5 166 9 2

θ =
⋅

⋅






 =−cos

.
( . ) ( . )

1 145
166 9 2

85
N m

N m
o

Notice that in the last line, I replaced the unit Joule with its definition, N⋅m, to show that the units cancel
out.  Remember, when dealing with a trigonometric function, the argument should have no units.  Thus,
any units in the problem need to fully cancel, as they do above.
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1.13   To calculate the magnitude of the cross product, we just use Equation (1.9).  To do that,
however, we need the angle between the vectors:

This angle is easy, it’s just 70.1o - 45.0o  =  25.1o.   Now we can use Equation (1.9):

|A x B|  = A⋅B⋅sinθ = (3.2 feet)⋅(1.1 feet)⋅sin(25.1o) = 1.5 feet2

To determine direction, we use the right hand rule.  We point the fingers of our right hand in the
direction of the first vector, then we curl along the arc of the 25.1o angle in between the vectors.  When
we do that, our thumb points up out of the page.  Thus, the vector is in the positive k direction.  That
tells us what we need to know for unit vector notation.  Thus, the vector is (1.5 feet2)⋅k.

1.14  Notice that the vectors are two-dimensional and have only i and j unit vectors.  Thus, we can use
the simpler version of the cross product formula, Equation (1.10):

A x B  =  (Ax⋅By - Ay⋅Bx)⋅k

A x B  =  [(-7.1)⋅(-4.1) - 4.2⋅3.4]⋅k  =  15⋅k

That’s the cross product.  What about the angle?  Well, we just need the magnitudes of all three vectors
and Equation (1.9).  The magnitude of the cross product is easy; it’s just 15.  What about A and B?

A

B

= − + =

= + − =

( . ) ( . ) .

( . ) ( . ) .

71 4 2 82

34 41 53

2 2

2 2

Now we can use Equation (1.9):

| | sin

( . ) ( . ) sin

sin
( . ) ( . )

.

A Bx A B

x o

= ⋅ ⋅

= ⋅ ⋅

=
⋅







=−

θ

θ

θ

15 82 53

15
8 2 5 3

2 0 101 1

45.0o

70.1o
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Notice that I had to put the answer in scientific notation.  The rules indicate that I must have 2 significant
figures.  The number 20 has only 1 significant figure.  Thus, I had to make that zero significant by putting
the whole number in scientific notation.

1.15   This is an easy one.  We are given the vectors for r and F, so we can just use Equation (1.13).
Since these are two-dimensional vectors in the i/j plane, we can use the simplified cross product
formula, Equation (1.10).

ττ   = r x F  =  (rx⋅Fy - ry⋅Fx)⋅k  =  [(1.2 m)⋅(23 N) - (1.1 m)⋅(15 N)]⋅k  = (11 N⋅m)⋅k

1.16   In this problem, we are dealing only with magnitudes.  Since we want to figure out the angle
between the vectors, we are going to use Equation (1.9):

| | sin

. ( . ) ( . ) sin

sin
.

( . ) ( . )

A Bx A B

N m m N

N m
m N

o

= ⋅ ⋅

⋅ = ⋅ ⋅

=
⋅

⋅






 =−

θ

θ

θ

4 9 0 36 152

4 9
036 152

641

To determine the direction, we use the right hand rule.  Point the fingers of your right hand from the nut
to the hand.  That is along the lever arm.  Now, curl your fingers towards the force, along the arc of the
angle between the lever arm and the force.  Your thumb should be up away from the paper.  Thus, the
torque points above the plane of the paper.
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REVIEW QUESTIONS FOR MODULE #1

1.  What is the conversion relationship between m2 and km2?

2.  Two vectors are written below.  Draw them on a Cartesian coordinate plane so that they each start
at the origin.

A: 55 miles/hour at 45 degrees B:  20 miles/hour at 210 degrees

3.  A position vector, P, is given as 36 miles at 15 degrees.  What are the magnitude and angle of
-2⋅P?

4.  In which region of the Cartesian coordinate system do you find the vector
A = 1.2⋅i - 3.4⋅j?

5.  You are given the vector S = -3.4⋅i - 4.5⋅j and must determine the angle at which it is pointing.  You
use the fact that tanθ = Sy/Sx to get the angle.  However, what do you have to do to the result of that
equation in order to report the angle so that it is defined properly?

6.  The dot product A•B is equal to 34.2 m2.  What is the value of B•A?

7.  Fill in the blank:

The dot product takes the magnitude of one vector and multiplies it by the magnitude of the second
vector’s component which is _____________ to the first vector.

8.  Suppose a person applies a force to an object, but the object travels in a direction that is
perpendicular to the force.  How much work is being done?

9.  The cross product  A x B is equal to (45 m2/sec2)⋅k.  What is the cross product B x A?

10.  Given the diagram below, determine the direction of the vector A x B.  Is the vector going back
behind the plane of the paper or coming out above the plane of the paper?

A

B
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PRACTICE PROBLEMS FOR MODULE #1

1.  Convert an acceleration of 845 feet/hour2 into meters/sec2.  (1 m = 3.281 feet)

2.  A Newton is a 
kg m⋅
sec2 .  Convert 15.1 Newtons into 

g cm
minute 2

⋅
.

3  The velocity vector of an object is v = (13 m/sec)⋅i - (11 m/sec)⋅j.  What are the magnitude and
direction of the velocity vector?

4.  Vector  A has a magnitude of 2.2 m/sec at an angle of 35.0 degrees, and vector B has a magnitude
of 3.4 m/sec at an angle of 120.0 degrees.  Graphically add these two vectors together, and then
compute the magnitude and direction.

5.  Given the following vectors:

A = (1.5 miles)⋅i  + (7.1 miles)⋅j
B = (1.8 miles)⋅i  -  (2.2 miles)⋅j

What is A + B?  What is A - B?  Give your answers in unit vector notation.

6.  Given the following vector:

C = (12.0 m)⋅i  +  (13.0 m)⋅j

What is -5⋅C in unit vector notation?

7.  An object undergoes a displacement x = (-5.2 m)⋅i + (1.1 m)⋅j while being acted upon by a constant
force F = (1.5 N)⋅i - (4.3 N)⋅j.  What is the work done?

8.  A person applies a force of 18 Newtons to an object as the object travels 3.4 meters.  The angle
between the force and the displacement is 35.1 degrees.  How much work was done?

9.  A construction worker is using a crowbar to pry a rock out of the ground.  He applies a force F = (-
55 N)⋅i - (34 N)⋅j + (43 N)⋅k at a lever arm r = (0.23 m) ⋅⋅i + (0.25 m)⋅j + (0.22 m)⋅k.  What is the
vector that represents the torque?

10.  A person applies a force in order to turn a crank.  The crank is 0.50 meters long, and he applies a
force of 15 Newtons.  If he applies the force at a 65 degree angle relative to the crank, what is the
torque?  How could the person exert more torque without increasing the force or changing the lever
arm?
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