Life of Fred Triganometry

Stanley F. Schmidt, Ph.D.

That's in Trig?

Trigonometry plays with triangles. Mostly right triangles. Trigon means triangle and metry means measuring (in Greek). Someone probably stuck the "o" in trigon-o-metry to make it easier to pronounce.

By the end of the first chapter of this book you'll be able to find the quantities indicated by a question mark:

and you'll know the first of the three major trig functions (the sine function). That's the first nine pages of the book.

The rest of the book pretty much flows naturally from those first nine pages. If you looked at the definition of the sine function in chapter one for several minutes, you could predict how the cosine and tangent functions would be defined in chapter two. The only thing you wouldn't know is their names.

In chapters three through nine, we take the concepts of sine, cosine, and tangent and stretch them like taffy. In chapter one we were taking the sine of the acute angles in a right triangle. In chapter three we wonder what the sine of 110° would equal. In chapter four we find the basic algebraic facts about sine, cosine, and tangent, such as (sine of A) ${ }^{2}+$ $(\text { cosine of A) })^{2}=1$ for every angle A. These basic facts will be used later in the book. In chapter five we invent a new way to measure angles. Instead of talking about 30°, we have $\pi / 6$ radians.

Chapter six: We put sines, cosines, and tangents in algebra equations and solve them.

Chapter seven: The trig functions are used in triangles that are not right triangles.

Chapter eight: We turn the sine, cosine, and tangent functions inside out by finding their inverses. Back in algebra we knew that if $\mathrm{h}($ Meddie $)=$ apple pie, then the inverse function, h^{-1}, would give us $\mathrm{h}^{-1}($ apple pie $)=$ Meddie.

Chapter nine: We locate the point $(2,3)$ on a graph using angles and lengths instead of just lengths. Instead of saying that the point is two units to the right and three units upward, we'll say that it is roughly 3.6 units from the origin at an angle of approximately 56°.

The real surprise comes in the last chapter. All the chapters from two through nine you might have been able
 to predict, but not chapter ten. In that last chapter we stir together parts of what we've learned in trigonometry so far and come up with the answer to $\sqrt[5]{1}$. Not just the answer $(\sqrt[5]{1}=1)$ that you know from algebra. We arrive at five different answers. By the end of that final chapter you will be able to name five different numbers each of which, when raised to the fifth power, will equal one. Probably less than 2% of all college graduates can name those numbers.

Cantents

Chapter 1 Sine 17
angle of elevation opposite and hypotenuse definition of sine angle of depression area of a triangle $(A=1 / 2 a b \sin \theta)$
Chapter 1½ Looking Back 34
graphing (axes, quadrants, origin, coordinates) significant digits
Chapter 2 Cosine and Tangent 40
adjacent side
slope and $\tan \theta$ $\tan 89.999999999999999999999^{\circ}$
solving triangles
Chapter 2½ Looking Back 61
functions
identity function functions as machines domain range
Chapter 3 Trig Functions of Any Angle 67
initial and terminal sides of an angle
standard position of an angle coterminal angles expanding the domain of a function periodic functions cosine is an even function sine is an odd function
Chapter 3½ Looking Back 87
factoring
difference of squares trinomials

 sum and difference of cubes

 fractions

 adding and subtracting

 complex fractions
 Chapter 4 Trig Identities 92
definition of an identity proving identities four suggestions for increasing your success in proving identities cotangent, secant and cosecant cofunctions of complementary angles eight major tricks to prove identities
Chapter 4½ Looking Back 121
graphing $y=a \sin x$
graphing $y=a \sin b x$
graphing $y=a \sin (b x+c)$
Chapter 5 Radians 127
degrees, minutes, seconds sectors conversions between degrees and radians area of a sector $\left(A=1 / 2 r^{2} \theta\right)$
Chapter 6 Conditional Equations and Functions of Two Angles 141
definition of a conditional equation
addition formulas
double-angle formulas
half-angle formulas sum and difference formulas product formulas
powers formulas
Chapter 7 Oblique Triangles 168
law of sines
law of cosines
Chapter 7½ Looking Back 192
inverse functions
1-1 functions
finding f^{-1}, given f
Chapter 8 Inverse Trig Functions 197
using a calculator to find trig inverses principal values of the arctan, arcsin and arccosine the ambiguous case
Chapter 9 Polar Coordinates 215
Cartesian coordinates
graph polar equations converting between Cartesian and polar coordinates the polar axis and the pole symmetry with respect to a point and with respect to a line
Chapter $91 / 2$ Looking Back 227functions1-1, ontodomain, codomain1-1 correspondence
the definition of the number 1
natural numbers
the definition of the number zero
whole numbers
rational numbers
irrational numbers
transcendental numbers
natural logarithms and common logarithms
e
real numbers
algebraic numbers
pure imaginary numbers
complex numbers
the complex number plane
i to the $\mathrm{i}^{\text {th }}$ power is a real number (≈ 0.2078796)
Chapter 10 Polar Form of Complex Numbers 251
$r \operatorname{cis} \theta$ means $r(\cos \theta+i \sin \theta)$ de Moivre's theorem proof of de Moivre's theorem the five answers to $\sqrt[5]{1}$
Chapter 10½ Looking Forward to Calculus 268
the three parts of calculus what's in each of the 24 chapters of calculus what you'll need to remember from your algebra, geometry, and trig to succeed in each chapter
A.R.T. section (a quick summary of all of trigonometry) 310
Index 316

Chapter One
 sine

Astrong wind blew from the south. That seemed like a good sign to Fred since he was heading north on Highway 135 in Kansas. It wouldn't be long before he'd be back at the university where he lived. Home - that had such a sweet sound to it.

He thought back over the last several days. On Friday, his sixth birthday, he had been seized by the induction evaders investigators and had endured 27 hours chained inside a military prisoner transport. He spent the weekend as a soldier down in a U.S. Army camp in Texas. By Monday he had an honorable discharge. The army chaplain paid his bus fare so that he could get back home. On the bus he had made friends with George and Cheryl Mittens and their three daughters and the girls' four friends. The bus was hijacked and driven to Cuba, Kansas. And finally on Tuesday after another bus ride to the South Kansas library, George, who had become a multi-billionaire on this bus trip, ordered a limo for Fred's trip back to the northern part of Kansas.*

The back of the limo was almost as big as Fred's office at KITTENS University (Kansas Institute for Teaching Technology, Engineering, and Natural Sciences). The interior was all leather and gold with a telephone, a television, and a wet bar.

The windows were tinted a dark blue-gray, making it difficult for Fred to see the evening sky.
"Is it okay if I roll down the window to look outside?" Fred asked the driver.
"Of course, Sir," the driver responded. "You may do as you wish. This is your vehicle to enjoy for the trip."

[^0]Chapter One Sine
Fred rolled down the window and was instantly sorry. His lap was filled with snow.

The bus driver put the limo on automatic pilot and raced back to assist his young passenger. "Don't worry about it, Sir," the driver assured him. "This happens frequently." He vacuumed Fred's lap with a wet/dry vacuum. "Perhaps you would enjoy a bit of dinner before we arrive at KITTENS?"

When Fred looked down at his lap, the driver thought Fred was nodding "yes," and so he began dinner preparations in the limo's kitchen. Fred was hoping that dinner would be a small slice of pineapple pizza. That would hit the spot before he arrived back at his office and could visit the vending machines down the hall. He had recently made it his goal to weigh 40 pounds before he hit puberty. That would mean that he would have to increase his body weight by 10% in the next seven years. The driver/chef placed a large oak table in front of Fred and brought in what he had called "a bit of dinner":

Afppetizer
Escargots in an Applewood-smoked Bacon Sauce
Soup
Spring Pea and Squash Blossom Soup with Duck Foie Gras
Salad
Montrachet Goat Cheese Melted over Young Field Greens
Pasta
Smoked Pheasant Ravioli with Fresh Tarragon
Sarbet*
Apple-Lime
O̊ntree
Saltimbocca of Salmon in a Bed of Northern Elk Medallions
Dessert
Jell-O ${ }^{\circledR}$

[^1]Fred sat there stunned. The vending machines down the hall never had anything like this. He carefully nibbled some of the young field greens (avoiding the melted goat cheese).

Suddenly the limo rolled to a stop. The driver looked at his watch and said, "This is too early for the limo to be coming to a stop. We've got another ten minutes before we get to KITTENS." He raced to the front to see why the automatic pilot had stopped the car.

The Troubled Waters Canyon Bridge had completely collapsed. In front of the car was a chasm about a hundred feet
 across.

Fred and the chauffeur got out of the car and looked at the mess. They could see the lights of the university in the distance.
"Don't worry, Sir," the driver assured Fred. "Acme Ultra Limo Service guarantees that we'll get you to your destination. It's our Gold Service.*"

The driver headed to the trunk of the car and pulled out a large wooden box marked, "Canyon-Fording Emergency \#351." Fred watched the driver unpack and inflate a large hot-air balloon.
"If you will just climb in, Sir," the driver said as he lifted his 37-lb. passenger into the balloon's basket.

[^2]"But, but, but," Fred exclaimed. "I don't know how to fly one of these things!"

"That's quite all right, Sir," the driver answered. "If you would please toss one end of the rope out of the basket and secure the other end, then everything will be quite safe."

Fred did as he was asked. He opened the package marked "Canyon-Fording Emergency Balloon-Tether 120-foot Rope \#351A", tossed one end out of the basket and tied the other end around his waist.

The driver looked at what Fred had done and gasped. 'Oh no, Sir! I'm afraid I wasn't quite clear. Some people who serve use the word quite quite a lot.] Please affix the rope to the basket. I shall attach the other end to this stake in the ground. Then as the balloon ascends, you shall never be more than 120 feet from me."

Fred couldn't figure out what was going on. How could going up in a hot-air balloon get him across this chasm?

(The driver had read the first seven words of this chapter.) He called out to Fred, "You may jump out of the basket now, Sir."

Chapter One

Jump? thought Fred. Where's my parachute? I really can't see how far it is to the ground. It's too dark.
"Driver," Fred called out in the darkness. "How far am I from the ground?"
"I can't tell, Sir," he responded. "It's too dark and you're too far away."

Fred said, "I know the rope is 120 feet long. Can you tell me what my angle of elevation is?"
"Very good, Sir." The driver headed to the storage unit in limo and grabbed a protractor,* put it on the ground and measured Fred's angle of elevation (which is how far above the horizontal he was). "Sir," he called to Fred, "Your angle of elevation is two degrees."

Fred needed to know how far the balloon was off the ground (marked by a "?" in the diagram). We have now arrived at the heart of trigonometry. Trig deals with the angles and sides of right triangles.
(Your reading speed should be adjusted appropriately since you're in a more mathematical section. For example, let's read the three sentences of the previous paragraph $\rightleftharpoons \longrightarrow$ and see what we find.

When you read that Fred needed to find the value of the "?," the thought may have come to you as you looked at the diagram that nothing in algebra or in geometry ever showed you how to find the length of the side that is opposite the 2° angle. The sentence, "We have now arrived at the heart of trigonometry," is really a most amazing statement. Five pages into the first chapter and we have a practical example of the use of the first trig function (the sine function) and by page six we will have defined it. No other trig textbook that I know of gets to this point this quickly. One trig book takes 165 pages to get to its first application of the sine function. The third sentence, "Trig deals with the angles and sides of right triangles," is one that you may have used your highlighter on-assuming this is your book and not someone else's.)

* Protractors are angle-measuring devices. They're usually plastic. You won't need one for trig, but you should have one if you're running a limousine company that offers Gold Service.

Then Dr. Speck asked the wrong question: "Tell me your thoughts boy. Tell me what you obsess about."

Maybe this doctor isn't so bad after all, Fred thought. I really don't think about my stomachache that much. What I have really been turing over in my mind-should I tell him? "You really want to know? You really care?" Fred asked. "It's been on my mind day and night recently."

> Clearly fixate d went into the patient's medical file.
"It all started with this handkerchief that my mother sewed for me." Fred withdrew it from his pocket and showed the doctor. "She spent a week sewing this for me. And then on the bottom she embroidered this message. It's the only thing I have from my mother."

Speck wrote, oedipal...exhibits rare handkerchief fetish. Also mother cant, sew straight and is dyslexic.

"As I looked at this gift, I realized it might be one of the most perfect law-of-cosines problems that has ever been invented. I've never seen a trig textbook with such a knotty nut to crack. Here are the measurements."

Fred took Speck's prescription pad and wrote:

from Chapter Seven

"These are the measurements of edges of the handkerchief and the length of one of the diagonals," Fred said. He was drifting into full lecture mode. "The problem is to find the length of the other diagonal."
"Well, son, that shouldn't be too hard. I got a ruler right here in my desk." He opened the drawer and removed some old racing forms, an unpaid parking ticket, a pair of gold-tooth cuff links, and a used hypodermic needle. "I don't seem to have a ruler here. I'll be back in six minutes." He left the room and headed down the hall to the break room.

While Dr. Speck is taking another smoke break, it might be fun to try and solve the handkerchief problem.

When Fred calls a problem "knotty," you know that it is one that might stump some trigonometry teachers. But this problem is also a fair problem. It can be solved using only the material we've covered so far in this book. (". . . in this book," not ". . . in this chapter." You may be using material from previous chapters.)

If you really, really want to learn trigonometry and you enjoy a challenge, this problem is for you. Its solution involves several steps. About one student in a hundred in Fred's trig classes can find the length of the other diagonal, which is (roughly) 6.069. Regardless of whether you succeed, it is worth the effort to try. The Handkerchief Problem is good exercise for the brain and will make it stronger.

[^3]Teddy was obviously talking about the Handkerchief Problem.

Index

	conjugate 245 conjugate of a + bi 266
54	concavity 284
54	conditional equation 146
abscissa . 35	constant of proportionality 292
algebraic numbers 240, 313	continuous 36
Alice in Wonderland 92	cosecant 315
alternate interior angles 26	definition 109, 115
ambiguous case 207	cosine . 315
angle of depression 25	definition 57
angle of elevation 21	cotangent 315
angles 310, 311	definition 106, 115
coterminal 68	de Moivre's theorem . . 257, 259, 268,
initial side 67	311
terminal side 67	proof 259, 260
angular speed 298	discrete . 36
area . 311	distributive law 79
area of a sector 136, 137	domain 64, 272
area of a segment of a circle 140	239
area of a triangle	Einstein . 41
Heron's formula 28	$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$. 272
112 ab $\sin \theta$. 28	factoring
1/2 bh . 29	difference of cubes . . 89, 119, 275
associative law 79, 307	difference of squares 87, 275
asymptotes of an hyperbola 285	easy trinomials 88
asymptotes of the tangent function . . 84	sum of cubes 89
Babylonian base 60 system 130	Florissant Resident Card 198
barber's paradox 253	fractions
BASIC program 277, 278	adding/subtracting 90
binomial formula 283	complex fractions 91
cardinal numbers 56	Freud . 42
cardioid . 220	function.......... 311
Carroll, Lewis 92	1-1 correspondence . . 229, 272, 312
Cartesian coordinates 216	codomain 228, 272, 311
codomain 272	domain 228, 272, 311
cofunction 111	even function 83, 311
Commentaries of Caesar on the Gallic	identity function 62, 311
War 271	inverse function 193, 273, 312
commutative law 79, 307	odd functions 311
complementary angle 57	one-to-one 228, 272, 312
complex number plane 246, 247	onto 228, 272, 312
complex numbers 244, 314	period 312
absolute value 266	periodic 263, 312

Ondex

periodic function 77
range 64, 311
Gibbon, Edward 93, 94
graphing ellipses 286, 297, 301
graphing hyperbolas 301
Hankerchief Problem ... 180, 181, 184
solution 186, 187, 205
history of job opportunities for women178
hydrostatic force 300
hyperbolic trig functions 306
hypocycloid 295
identities 313
definition 95
from algebra 79
identity function 62
iff 229
imaginary numbers 244, 248
conjugate of $\mathrm{a}+\mathrm{bi}$ 266
integers 234
irony 35
Isidore of Seville 227
law of cosines 174, 314
proof 187
law of sines 183, 314
ambiguous case 207, 208
proof 183
laws of logarithms 299
limit of a function 51
Lister, Joseph 150
Llama Crackers 191
Llama of the Month 169
logarithm
laws 299
logarithmns
common 238
natural 238
Malfatti's problem 254
mathematical induction 260
Merchant of Venice 37
Mt. Math 112
multiple angle formulas 312
adding/subtracting 312
addition formulas 156
double-angle formulas 156, 312
half-angle formulas 156, 312
powers formulas 157, 313
product formulas 157, 313
sum and difference formulas 157,313
Napoleon 42
natural numbers 232, 313
Nightingale, Florence 177, 178
numbers
abundant 143
algebraic numbers 240, 313
complex numbers 244, 314
deficient 143
e 239
irrational numbers 237, 239
natural numbers 232, 313
perfect 143
pure imaginary numbers 244,248, 314
rational numbers 235, 313
real numbers 240
transcendental numbers 237, 313
whole numbers 234, 313
oblique triangles 314
definition 171
odd function 84
one, definition of 232
one-to-one functions 192, 272
open and closed intervals 291
open question in mathematics 144
ordinal numbers 56
pangrams 206
partial fractions 305, 306
periodic function 77
period 263, 312
point-slope form of the line 49, 281
polar coordinates 216, 314
conversion formulas 218
polar axis 220
pole 220
polynomials 275, 276
principal values of the inverse trigfunctions 203, 204, 315
protractor 21
pure imaginary numbers 244, 314
quadrants 35
r cis θ 257
radians 287, 314
$180^{\circ}=\pi$ radians 133
definition 132
Rafferty's Pizza 52

Ondex
range . 272
rational numbers 235, 313
real numbers 240
rectangular coordinate system 216
reflexive law of equality 79
rotational symmetry 264
Russell's paradox 253
saltimbocca 40, 4 94
secant . 315
definition 98, 115
sector . 287
area . 287
significant digits 36-39
sine . 315
definition 22
slope . 280, 314
slope-intercept form of the line 49
sphere
surface area 290
volume . 290
SSA . 207
standard position 67
suggestions for increasing success in solving trig identities ... 104,

105
symmetric law of equality 158
symmetry with respect to a line 223
symmetry with respect to a point . . 222
tangent . 315
definition 44
Teilhard de Chardin 81
the dreaded Triple B's 102
torque . 296
transcendental numbers 237, 313
trig identities
the major tricks 115, 116
unit circle definitions of trig functions
. 315
vectors . 306
volume of a cone 282
volume of a cylinder 285, 293
volume of a sphere 290
whole numbers 234, 313
Word Ladders 92
work 293, 295, 297
worlds
New World 233
Old World 233

$\mathrm{y}=4 \sin \left(2 \mathrm{x}+30^{\circ}\right)$. 124

$y=\sin (2 x) \ldots$.
$\mathrm{y}=\sin \left(\mathrm{x}+35^{\circ}\right) \ldots . .$. 124
$\mathrm{y}=$ taller $\sin ($ faster $\mathrm{x}+$ earlier $) \ldots 124$

[^0]: * The adventures of Fred from Thursday afternoon (the day before Fred's sixth birthday) to Monday are told in Life of Fred: Beginning Algebra. Monday and Tuesday are chronicled in Life of Fred: Advanced Algebra.

[^1]: * A sorbet is a fruit or vegetable ice which is served before the main course as a palate cleanser. Webster's Ninth New Collegiate Dictionary indicates that the correct pronunciation is SOAR-bet. This reflects the fact that sorbet is a word originally from Turkish. Webster's Tenth switches to soar-BAY which is the way most people seem to pronounce it today.

[^2]: * Acme Ultra Limo is often abbreviated as AU Limo. In chemistry, Au is the symbol for gold.

[^3]: Far better it is to dare mighty things, to win glorious triumphs, even though checkered by failure, than to take rank with those poor spirits who neither enjoy much nor suffer much, because they live in the gray twilight that knows not victory nor defeat
 -Theodore Roosevelt

