Life of Fred Trigonometry

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

What's in Trig?

Trigonometry plays with triangles. Mostly right triangles. *Trigon* means triangle and *metry* means measuring (in Greek). Someone probably stuck the "o" in *trigon-o-metry* to make it easier to pronounce.

By the end of the first chapter of this book you'll be able to find the quantities indicated by a question mark:

and you'll know the first of the three major trig functions (the sine function). That's the first nine pages of the book.

The rest of the book pretty much flows naturally from those first nine pages. If you looked at the definition of the sine function in chapter one for several minutes, you could predict how the cosine and tangent functions would be defined in chapter two. The only thing you wouldn't know is their names.

In chapters three through nine, we take the concepts of sine, cosine, and tangent and stretch them like taffy. In chapter one we were taking the sine of the acute angles in a right triangle. In chapter three we wonder what the sine of 110° would equal. In chapter four we find the basic algebraic facts about sine, cosine, and tangent, such as (sine of A)² + (cosine of A)² = 1 for every angle A. These basic facts will be used later in the book. In chapter five we invent a new way to measure angles. Instead of talking about 30°, we have $\pi/6$ radians.

Chapter six: We put sines, cosines, and tangents in algebra equations and solve them.

Chapter seven: The trig functions are used in triangles that are not right triangles.

Chapter eight: We turn the sine, cosine, and tangent functions inside out by finding their inverses. Back in algebra we knew that if h(Meddie) = apple pie, then the inverse function, h^{-1} , would give us $h^{-1}(apple pie) = Meddie$.

Chapter nine: We locate the point (2, 3) on a graph using angles and lengths instead of just lengths. Instead of saying that the point is two units to the right and three units upward, we'll say that it is roughly 3.6 units from the origin at an angle of approximately 56°.

The real surprise comes in the last chapter. All the chapters from two through nine you might have been able

to predict, but not chapter ten. In that last chapter we stir together parts of what we've learned in trigonometry so far and come up with the answer to $\sqrt[5]{1}$. Not just the answer ($\sqrt[5]{1} = 1$) that you know from algebra. We arrive at five *different* answers. By the end of that final chapter you will be able to name five different numbers each of which, when raised to the fifth power, will equal one. Probably less than 2% of all college graduates can name those numbers.

Contents

Chapter 1	Sine
Chapter 1 ¹ / ₂	Looking Back
Chapter 2	Cosine and Tangent
Chapter 2 ¹ / ₂	Looking Back
Chapter 3	Trig Functions of Any Angle
Chapter 3 ¹ / ₂	Looking Back

Chapter 4	Trig Identities
Chapter 4½	Looking Back
Chapter 5	Radians
Chapter 6	Conditional Equations and Functions of Two Angles 141 definition of a conditional equation addition formulas double-angle formulas half-angle formulas sum and difference formulas product formulas powers formulas
Chapter 7	Oblique Triangles
Chapter 7 ¹ / ₂	Looking Back
Chapter 8	Inverse Trig Functions
Chapter 9	Polar Coordinates

Chapter 9½	Looking Back
Chapter 10	Polar Form of Complex Numbers
Chapter 10½	Looking Forward to Calculus
A.R.T. section	n (a quick summary of all of trigonometry)
Index	

Chapter One sine

strong wind blew from the south. That seemed like a good sign to Fred since he was heading north on Highway 135 in Kansas. It wouldn't be long before he'd be back at the university where he lived. *Home*—that had such a sweet sound to it.

He thought back over the last several days. On Friday, his sixth birthday, he had been seized by the induction evaders investigators and had endured 27 hours chained inside a military prisoner transport. He spent the weekend as a soldier down in a U.S. Army camp in Texas. By Monday he had an honorable discharge. The army chaplain paid his bus fare so that he could get back home. On the bus he had made friends with George and Cheryl Mittens and their three daughters and the girls' four friends. The bus was hijacked and driven to Cuba, Kansas. And finally on Tuesday after another bus ride to the South Kansas library, George, who had become a multi-billionaire on this bus trip, ordered a limo for Fred's trip back to the northern part of Kansas.*

The back of the limo was almost as big as Fred's office at KITTENS University (Kansas Institute for Teaching Technology, Engineering, and Natural Sciences). The interior was all leather and gold with a telephone, a television, and a wet bar.

The windows were tinted a dark blue-gray, making it difficult for Fred to see the evening sky.

"Is it okay if I roll down the window to look outside?" Fred asked the driver.

"Of course, Sir," the driver responded. "You may do as you wish. This is your vehicle to enjoy for the trip."

^{*} The adventures of Fred from Thursday afternoon (the day before Fred's sixth birthday) to Monday are told in Life of Fred: Beginning Algebra. Monday and Tuesday are chronicled in Life of Fred: Advanced Algebra.

Chapter One Sine

Fred rolled down the window and was instantly sorry. His lap was filled with snow.

The bus driver put the limo on AUTOMATIC PILOT and raced back to assist his young passenger. "Don't worry about it, Sir," the driver assured him. "This happens frequently." He vacuumed Fred's lap with a wet/dry vacuum. "Perhaps you would enjoy a bit of dinner before we arrive at KITTENS?"

When Fred looked down at his lap, the driver thought Fred was nodding "yes," and so he began dinner preparations in the limo's kitchen. Fred was hoping that dinner would be a small slice of pineapple pizza. That would hit the spot before he arrived back at his office and could visit the vending

machines down the hall. He had recently made it his goal to weigh 40 pounds before he hit puberty. That would mean that he would have to increase his body weight by 10% in the next seven years. The driver/chef placed a large oak table in front of Fred and brought in what he had called "a bit of dinner":

AppeligerEscargots in an Applewood-smoked Bacon Sauce
& OoupSpring Pea and Squash Blossom Soup with Duck Foie Gras
& OaladMontrachet Goat Cheese Melted over Young Field Greens
& PastaSmoked Pheasant Ravioli with Fresh Tarragon
 $& Oarbet^*$
Apple-Lime
& EntreeSaltimbocca of Salmon in a Bed of Northern Elk Medallions
& Dessert
 $& Jell-O^{\circledast}$

[★] A sorbet is a fruit or vegetable ice which is served before the main course as a palate cleanser. *Webster's Ninth New Collegiate Dictionary* indicates that the correct pronunciation is SOAR-bet. This reflects the fact that sorbet is a word originally from Turkish. *Webster's Tenth* switches to soar-BAY which is the way most people seem to pronounce it today.

Chapter One Sine

Fred sat there stunned. The vending machines down the hall never had anything like this. He carefully nibbled some of the young field greens (avoiding the melted goat cheese).

Suddenly the limo rolled to a stop. The driver looked at his watch and said, "This is too early for the limo to be coming to a stop. We've got another ten minutes before we get to KITTENS." He raced to the front to see why the AUTOMATIC PILOT had stopped the car.

The Troubled Waters Canyon Bridge had completely collapsed. In front of the car was a chasm about a hundred feet across.

Fred and the chauffeur got out of the car and looked at the mess. They could see the lights of the university in the distance.

"Don't worry, Sir," the driver assured Fred. "Acme Ultra Limo Service guarantees that we'll get you to your destination. It's our Gold Service.*"

The driver headed to the trunk of the car and pulled out a large wooden box marked, "Canyon-Fording Emergency #351." Fred watched the driver unpack and inflate a large hot-air balloon.

"If you will just climb in, Sir," the driver said as he lifted his 37-lb. passenger into the balloon's basket.

^{*} Acme Ultra Limo is often abbreviated as AU Limo. In chemistry, Au is the symbol for gold.

"But, but, but," Fred exclaimed. "I don't know how to fly one of these things!"

"That's quite all right, Sir," the driver answered. "If you would please toss one end of the rope out of the basket and secure the other end, then everything will be quite safe."

Fred did as he was asked. He opened the package marked "Canyon-Fording Emergency Balloon-Tether 120-foot Rope #351A", tossed one end out of the basket and tied the other end around his waist.

The driver looked at what Fred had done and gasped. "Oh no, Sir! I'm afraid I

wasn't quite clear. Some people who serve use the word *quite* quite a lot.] Please affix the rope to the basket. I shall attach the other end to this stake in the ground. Then as the balloon ascends, you shall never be more than 120 feet from me."

Fred couldn't figure out what was going on. How could going up in a hot-air balloon get him across this chasm?

What Fred thought was going to happen

What really happened

(The driver had read the first seven words of this chapter.) He called out to Fred, "You may jump out of the basket now, Sir."

Chapter One Sine

Jump? thought Fred. Where's my parachute? I really can't see how far it is to the ground. It's too dark.

"Driver," Fred called out in the darkness. "How far am I from the ground?"

"I can't tell, Sir," he responded. "It's too dark and you're too far away."

"Very good, Sir." The driver headed to the storage unit in limo and grabbed a protractor,^{*} put it on the ground and measured Fred's angle of elevation (which is how far above the horizontal he was). "Sir," he called to Fred, "Your angle of elevation is two degrees."

Fred needed to know how far the balloon was off the ground (marked by a "?" in the diagram). We have now arrived at the heart of trigonometry. Trig deals with the angles and sides of right triangles.

(Your reading speed should be adjusted appropriately since you're in a more mathematical section. For example, let's read the three sentences of the previous paragraph ______ and see what we find.

When you read that Fred needed to find the value of the "?," the thought may have come to you as you looked at the diagram that nothing in algebra or in geometry ever showed you how to find the length of the side that is opposite the 2° angle. The sentence, "We have now arrived at the heart of trigonometry," is really a most amazing statement. Five pages into the first chapter and we have a practical example of the use of the first trig function (the sine function) and by page six we will have defined it. No other trig textbook that I know of gets to this point this quickly. One trig book takes 165 pages to get to its first application of the sine function. The third sentence, "Trig deals with the angles and sides of right triangles," is one that you may have used your highlighter on—assuming this is your book and not someone else's.)

* Protractors are angle-measuring devices. They're usually plastic. You won't need one for trig, but you should have one if you're running a limousine company that offers Gold Service.

from Chapter Seven Oblique Triangles

Then Dr. Speck asked the wrong question: "Tell me your thoughts boy. Tell me what you obsess about."

Maybe this doctor isn't so bad after all, Fred thought. I really don't think about my stomachache that much. What I have really been turning over in my mind-should I tell him? "You really want to know? You really care?" Fred asked. "It's been on my mind day and night recently."

Clearly fixated went into the patient's medical file.

"It all started with this handkerchief that my mother sewed for me." Fred withdrew it from his pocket and showed the doctor. "She spent a week sewing this for me. And then on the bottom she embroidered this message. It's the only thing I have from my mother."

Speck wrote, cedipal...exhibits rare

sew straight and is dyslexic.

Love to Ferd V

"As I looked at this gift, I realized it might

be one of the most perfect law-of-cosines problems that has ever been invented. I've never seen a trig textbook with such a knotty nut to crack. Here are the measurements."

Fred took Speck's prescription pad and wrote:

180

from Chapter Seven

Oblique Triangles

"These are the measurements of edges of the handkerchief and the length of one of the diagonals," Fred said. He was drifting into full lecture mode. "The problem is to find the length of the other diagonal."

"Well, son, that shouldn't be too hard. I got a ruler right here in my desk." He opened the drawer and removed some old racing forms, an unpaid parking ticket, a pair of gold-tooth cuff links, and a used hypodermic needle. "I don't seem to have a ruler here. I'll be back in six minutes." He left the room and headed down the hall to the break room.

While Dr. Speck is taking another smoke break, it might be fun to try and solve the handkerchief problem.

When Fred calls a problem "knotty," you know that it is one that might stump some trigonometry teachers. But this problem is also a *fair* problem. It can be solved using only the material we've covered so far in this book. ("... in this *book*," not "... in this chapter." You may be using material from previous chapters.)

If you really, really want to learn trigonometry and you enjoy a challenge, this problem is for you. Its solution involves several steps. About one student in a hundred in Fred's trig classes can find the length of the other diagonal, which is (roughly) 6.069. Regardless of whether you succeed, it is worth the effort to try. The Handkerchief Problem is good exercise for the brain and will make it stronger.

Far better it is to dare mighty things, to win glorious triumphs, even though checkered by failure, than to take rank with those poor spirits who neither enjoy much nor suffer much, because they live in the gray twilight that knows not victory nor defeat. —Theodore Roosevelt

Teddy was obviously talking about the Handkerchief Problem.

Index

≈
$\doteq \ldots \ldots 54$
abscissa
algebraic numbers 240, 313
Alice in Wonderland
alternate interior angles 26
ambiguous case
angle of depression 25
angle of elevation
angles 310, 311
coterminal
initial side 67
terminal side 67
angular speed 298
area
area of a sector 136, 137
area of a segment of a circle 140
area of a triangle
Heron's formula
$\frac{1}{2}$ ab sin θ
$\frac{1}{2}$ bh 29
associative law 79, 307
asymptotes of an hyperbola 285
asymptotes of the tangent function 84
Babylonian base 60 system 130
barber's paradox 253
BASIC program 277, 278
binomial formula 283
cardinal numbers
cardioid 220
Carroll, Lewis 92
Cartesian coordinates 216
codomain 272
cofunction
Commentaries of Caesar on the Gallic
War
commutative law
complementary angle 57
complex number plane 246, 247
complex numbers 244, 314
absolute value

conjugate 2	45
conjugate of a + bi 2	66
concavity	84
conditional equation 1	46
constant of proportionality 2	92
continuous	
cosecant	
definition 109, 1	
cosine	15
definition	57
cotangent	15
definition 106, 1	
de Moivre's theorem 257, 259, 26	58,
	11
proof	60
discrete	36
distributive law	79
domain 64, 2	72
e	
Einstein	
$f:A \rightarrow B$ 2	72
factoring	
difference of cubes 89, 119, 2	75
difference of squares 87, 2	75
easy trinomials	88
sum of cubes	89
Florissant Resident Card 1	98
fractions	
adding/subtracting	90
complex fractions	91
Freud	
function	11
1-1 correspondence 229, 272, 3	12
codomain 228, 272, 3	11
domain 228, 272, 3	11
even function	11
identity function 62, 3	11
inverse function 193, 273, 3	12
odd functions 3	
one-to-one 228, 272, 3	12
onto 228, 272, 3	
	12
period	12

Index

periodic function	77
range	64, 311
Gibbon, Edward	93, 94
graphing ellipses	286, 297, 301
graphing hyperbolas	
Hankerchief Problem	180, 181, 184
solution	
history of job opportunitie	
·····	
hydrostatic force	
hyperbolic trig functions .	
hypocycloid	
identities	
definition	
from algebra	
identity function	
iff	
imaginary numbers	
conjugate of a + bi	
integers	
irony	
Isidore of Seville	
law of cosines	
proof	
law of sines	
ambiguous case	
proof	
laws of logarithms	
limit of a function	
Lister, Joseph	
Llama Crackers	
Llama of the Month	169
logarithm	
laws	299
logarithmns	
common	238
natural	238
Malfatti's problem	
mathematical induction	
Merchant of Venice	
Mt. Math	112
multiple angle formulas .	
adding/subtracting	
	156
double-angle formulas	
half-angle formulas	
powers formulas	
product formulas	
r	, . 10

sum and difference formulas 157,
313
Napoleon 42
natural numbers 232, 313
Nightingale, Florence 177, 178
numbers
abundant
algebraic numbers 240, 313
complex numbers 244, 314
deficient
e 239
irrational numbers 237, 239
natural numbers 232, 313
perfect 143
pure imaginary numbers 244,
248, 314
rational numbers 235, 313
real numbers 240
transcendental numbers 237, 313
whole numbers 234, 313
oblique triangles 314
definition
odd function
one, definition of 232
one-to-one functions 192, 272
open and closed intervals 291
open question in mathematics 144
ordinal numbers
pangrams 206
partial fractions
periodic function
period 263, 312
point-slope form of the line 49, 281
polar coordinates
conversion formulas 218
polar axis 220
pole
polynomials 275, 276
principal values of the inverse trig
functions 203, 204, 315
protractor
pure imaginary numbers 244, 314
quadrants
$r \operatorname{cis} \theta$
radians 287, 314
$180^\circ = \pi$ radians
definition 132
Rafferty's Pizza 52

Index

range 272
rational numbers 235, 313
real numbers 240
rectangular coordinate system 216
reflexive law of equality
rotational symmetry 264
Russell's paradox
saltimbocca 40, 94
secant
definition
sector
area
significant digits 36-39
sine
definition 22
slope 280, 314
slope-intercept form of the line 49
sphere
surface area 290
volume
SSA 207
standard position
suggestions for increasing success in
solving trig identities 104,
105
symmetric law of equality 158
symmetric law of equality 158 symmetry with respect to a line 223
symmetric law of equality 158 symmetry with respect to a line 223 symmetry with respect to a point 222
symmetric law of equality 158 symmetry with respect to a line 223 symmetry with respect to a point 222 tangent
symmetric law of equality 158 symmetry with respect to a line 223 symmetry with respect to a point 222 tangent
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities
symmetric law of equality 158 symmetry with respect to a line 223 symmetry with respect to a point 222 tangent
symmetric law of equality 158 symmetry with respect to a line 223 symmetry with respect to a point 222 tangent
symmetric law of equality 158 symmetry with respect to a line 223 symmetry with respect to a point
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone282
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone285, 293
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone285, 293volume of a sphere290
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone282volume of a sphere290whole numbers234, 313
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone285, 293volume of a sphere290whole numbers234, 313Word Ladders92
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone282volume of a sphere290whole numbers234, 313
symmetric law of equality158symmetry with respect to a line223symmetry with respect to a point222tangent315definition44Teilhard de Chardin81the dreaded Triple B's102torque296transcendental numbers237, 313trig identities115, 116unit circle definitions of trig functions315vectors306volume of a cone282volume of a sphere290whole numbers234, 313Word Ladders92work293, 295, 297

$y = 4 \sin x \dots \dots$
$y = 4 \sin(2x + 30^{\circ}) \dots 124$
$y = \sin x \dots \dots 122$
$y = \sin(2x) \dots 123$
$y = \sin(x + 35^{\circ}) \dots \dots$
$y = taller sin(faster x + earlier) \dots 124$

318