SCIENCE The Search Discovering the Principles that G overn God's Creation

David Quine

Book 4 Scientific Theories

Observation Notebook

- Use a spiral or three ring binder to record your data -

9/9/94 Actívíty 1 - Thump! Thump!

Pulse Rate:
 What might effect pulse rate:
 . Running
 . Lying Down
 . Eating
 . Sitting
 . Standing
 Pulse Rate
 Lying Down
 Sitting
 Standing

ACTIVITY 1 THUMP - THUMP

MATERIALS
watch with a second hand, or stop watch
OVERVIEW: EXPLORING THE CONCEPT - CIRCULATORY SYSTEM
LESSON PLAN
MATERIALS OR INFORMATION I NEED WHAT I AM TO DO AND TO CONSIDER
"As a human you have been created with many systems in your body. Your eyes, heart, and lungs are three parts of body systems. You are going to begin investigating one of these systems today."
"Put the fingers of your left hand on the thumb side of your right wrist. Press with your fingers."
"Describe what you feel."
"That 'thump, thump' feeling is called your pulse."
"Find your pulse again."
1 You will need a clock with a second hand or a stop wat ch. Have your mom or dad keep track of the time and you count your pulse.
"Count the number of beats for one minute."
"Ready ... set ... count."
At the end of one minute ...
"Stop." ...
"How many times did you feel your pulse?"
"That is called your pulse rate."
"What are some things that might affect your pulse rate?"
"How do you think standing, sitting, and laying down would affect your pulse rate? ... Why do you think so?"
"Do you think your pulse rate would be more or less when standing, sitting, or lying down?"
"Why do you think so?"

Hint: You might consider the following:
Find the pulse rat e for everyone in your family. Include grandparents if possible. A not her investigation would be to compare the affect of drinking a cola versus a fruit juice. Be sure that all ot her variables are controlled (i.e. Stay the same). Note: Cola drinks cont aining caffeine will show a significant effect after a period of time. Monitor the changes over 30 minutes.
"How do you think it would be different?"
"F ind your pulse rate while you are standing, sitting, and lying down. Wait one minute in each position before you begin."
"Keep track of your results."
"Make a bar graph of your data."
"What does your data tell about body position and pulse rate?"
"Did you expect your pulse to be the same in each position?"
"Find out how pulse rates are affected by:

- Age
- Time of day
- Eat ing \& drinking
- Boy or girl
"Make a bar graph of your results."
"What did you find out about pulse rates?"
"What variable seems to have the great est affect on pulse rate?"

Opt ional ... you may need to contact your local veterinarian.
"Find the pulse rate of one of your pets."
"Where did you find the pulse?"
"How fast was the pulse?"
"How does it compare with your pulse rate?"

ACTIVITY 2
 FAST ... FASTER ... FASTEST

MATERIALS
jump rope
watch with a second hand, or stop watch
OVERVIEW: EXPLORING THE CONCEPT - CIRCULATORY SYSTEM

LESSON PLAN
MATERIALS OR INFORMATION INEED
WHAT I AM TO DO AND TO CONSIDER
Begin this activity before you get out of bed!.
"Before you get out of bed this morning take your pulse rate."
"How many times did you feel your pulse in one minute?"
"S ince you have been rest ing, this is called your resting pulse rate."
"What do you think will happen to your pulse if you exercise? Later today you will test your idea."

1 Later in the day ... you will need a jump rope.
"Find your pulse rate after you jump rope for one minute."
"Ready ... set ... go! ... [After one minute] st op."
"Begin taking your pulse."
"How did your pulse rate change?"
"What can you say about pulse rate and exercise?"
"What affect would ot her types of exercise or work have on your pulse rate?"
"Which do you think would increase your pulse rate the most:

- Mowing the lawn
- Running
- Playing basket ball
- Riding a bike
- S weeping or mopping the floor?"
"What could you do to find out?"
"If you ride your bike for one minute, but run for five minutes, would it be a fair to compare pulse rates?
... Why not?"
"What variable do you want to investigate?"
(Answer: Check the ans wer key.)
"What are some variables you need to keep the same?"
(Answer: Check the ans wer key.)

2. If you need help designing and carrying out this investigation, ask your parents. Be sure to find your pulse rate before and aft er the experiment.
"Design a plan to test the affect of working or exercising on your pulse rate."
"Now, conduct the experiment to find out what effect work has on your pulse rate."
"What did you find out?"
"Make a statement about pulse rate and work (or exercise)."

ACTIVITY 3
 GETTING BACK TO NORMAL

MATERIALS
jump rope
stop watch
OVERVIEW: EXPLORING THE CONCEPT - CIRCULATORY SYSTEM

LESSON PLAN
MATERIALS OR INFORMATION INEED
WHAT I AM TO DO AND TO CONS IDER
"What is your resting pulse rate right now?
Today you are going to raise your pulse rate by exercis ing and then find out how long it takes to come back to your rest ing rate."

1 You will need the graph tit le
Recovery Rate.
For example, if your resting pulse rate is 70 , then find 70 pulses per minute on the graph. Draw a horizont al line across the paper at this point.
"Using your colored marker, draw a horizont al line showing your rest ing pulse rate ... this line represents your resting pulse rate."
"How long do you think it will take for your pulse to ret urn to normal after you exercise?"
"After you exercise you will find your pulse each minute for fift een minut es."
2. You will need jump ropes.
"You will jump rope unt il you are breat hing hard. Probably about two minutes. Then record your pulse rate each minute for fift een minut es."
"Ready... set begin jumping."
3. After about two minutes or until you are breathing hard, then ...
"Stop."
4. With a stop watch or a watch with a second hand
"Begin taking your pulse. Count out loud. Begin count ing at one each time. Take your pulse every minute for fift een minut es. Begin count ing."

Cont inue until you have collected data for fift een minut es. Since you will be count ing, you will need anot her pers on to record your data for you.

Find the second minute aft er exercis ing... move up the graph unt il you reach the intersection of the pulse rate. This will help you plot your data.

A short recovery time indicates good physical condit ion. Begin a regular exercise program...
"Now, take your data and put it on the graph. What was your pulse rate one minut e after exercising."
"Find one minute on the graph. Move up the graph unt il you reach " - " pulses per minute. Place an ' x ' at this intersection."
"Cont inue for each minut e aft er you exercise."
"Next, connect each 'x' with a line."
"What does this graph mean?"
"How long did it take for your pulse rate to get back to normal?"
"Did it go below your rest ing pulse rate? ... Why do you think it did?"
"The lengt h of time for your pulse to ret urn to its resting rate is called the recovery time."
"Why don't you begin a regular exercise program and monit or your pulse rat es and the recovery time."
"Do you think that recovery time can be changed by exercise? S ee if regular exercise will affect your recovery rate?"
"At the end of each week record the number of minutes it takes for your pulse to ret urn to the resting rate."
"Also put this data on the graph."
"What can you say about recovery rate and exercise?"

PULSE RECOVERY RATE

210

180

90

60

30

0

ACTIVITY 4
 CIRCULATORY SYSTEM - A MODEL

MATERIALS
bottle, plastic, 32 ounce, detergent bottle
corks, 2
straws, 2 hard plastic
rubber tubing, 2, 10 inches each, and 1, 24 inches - they should snugly fit over the straw jars, 2

OVERVIEW: NAMING THE CONCEPT - CIRCULATORY SYSTEM

LESSON PLAN

MATERIALS OR INFORMATION I NEED WHATIAM TO DO AND TO CONS IDER

"In the last several act ivities you have been observing the variables that affect your pulse."
"What causes this 'thump-thump' that you feel?"
(Ans wer: Check the ans wer key.)
"Yes, your pulse has somet hing to do with your heart and blood."
"Today, you are going to build a model to explain why you feel your pulse."

1 You will need the necessary mat erials.
The t wo corks will need to be drilled so that the straws will very snuggle fit int o the hole. Hammering a large nail through the cork will also work.

You will need the two jars.
"Here is how you will assemble the materials."
"Gently t wist the st raw through the hole in the cork. Then do the same with the ot her cork and straw."
"Cut a hole in the bottom of the plastic bottle. Fit one of the corks int o the hole."
"Take the lid off the bottle. Fit the second cork into the hole in the top of the bottle."
"Now, attach a piece of rubber tubing to each straw."
"Label this jar ' 1 '. And the ot her jar '2'."

NOTE: You will need the assistance of one or two other people to make the model work correctly.
"Pour water int o J ar 1so that it is half full. Leave the ot her jar empty."
"Put one of the pieces of tubing hanging from the bott le int 0 ar 1 Put the tubing from the ot her end of the bottle into Jar 2."
"Using a piece of paper, label the tube intol ar 1'a'." Label the tube going int o J ar 2 ' b '."
"Put water into the bottle until it is about half full. To do this, you can remove the stopper at the top of the bottle. Squeeze tube 'b' tightly so that the water does not leave the bottle while it is being filled. Hold the bot tle on its side. Squeeze tube 'a' with your fingers."
"Now, give the bottle a quick, hard squeeze. Do not release the bot tle. Observe what happens. Hold the end of tube 'b' above jar 2. Now, release the bot tle. Repeat this unt il the water in the bottle is about half gone."
"Tight ly squeeze t ube ' b '. Squeeze the bot tle and release it. What happens to the water in jar 1 ? Repeat this several times. Make a careful record of what happens when each tube is squeezed tightly."
"You also have a piece of rubber tubing about 24 inches. Put one end of that tubing int o the jar tube b has been empt ying int o. Suck the air out of the long tubing. Start the water running from jar 2 to jar 1 You may have to pract ice a few times. Practice as much as you need to keep the water running bet ween the jars."
"Now your equipment is working. Water is moving from jar 1t o jar 2 through the bottle. You know how to squeeze the bottle and the tubes to do this. Practice until you can keep the amounts of water in jars 1and 2 the same."
"Describe how the water goes from J ar 1toJ ar 2. Compare how the water reaches J ar 2 with how it goes from J ar 2 to J ar 1 Be sure to compare the way the water flows in both cases. Make accurate records about the differences in the flow from J ar 1 to Jar 2 and from J ar 2 to Jar $1^{\prime \prime}$ (Answer: Check the answer key.)
"Feel your pulse. Now, go back to the model. What in your experiment could be compared with the thump of your pulse?"
(A nswer: Check the answer key.)
"What caused the short bursts of water that entered jar 2? Use your data to answer this question."
"What in your body causes the thump of your pulse? Use the data you have gat hered to make a model of how your heart pushes blood through your body. How does your model allow you to explain heart beat?"
(Answer: Check the answer key.)
"Your fingers were an important aid in moving water from J ar 1 to 0 ar 2 . Explain their purpose in the experiment. Your heart has a way of doing what your fingers did. In your heart there are valves."
"The valves in your heart keep blood in its proper place. Your fingers worked as valves in your experiment. Your heart delivers blood to the arteries in your body. It delivers blood to the arteries in spurts. What represents the art eries in your model?"
"After the art eries deliver blood to the body, the veins collect it. The veins deliver blood back to the heart."
"Answer these important questions:

- What represents the veins in your model? (Answer: S ee answer key.)
- What represents the heart in your model?" (A nswer: S ee answer key.)
- What represents the art eries?"
(Answer: S ee ans wer key.)
- What represents the valves?"
(Answer: S ee answer key.)
"The heart delivers blood to the art eries in spurts. Your model tells you how the veins deliver blood back to the heart. Make a record of how this happens. You know you can feel the spurts of blood being delivered to the art eries. Why can't you feel the blood being delivered back to the heart?" (Answer: S ee answer key.)
"Describe the flow of water in your model."
"Make a diagram showing the movement of the water in your system. Draw arrows showing this movement. Indicate the places where spurts occur.
"This is a simple model showing the movement of blood through your body."
"The complete system of movement is called the circulat ory system."

RECOMMENDED READINGS:

At this time you should encourage your children to select several books from the library that would expand their understanding of the circulatory system. Below of several suggested selections:

Schneider, Leo. Lifeline: the Story of Your Circulatory System. N ew York: H arcourt Brace and Jovanovich, 1958.
Weart, Edith Lucie. TheStory of Your Blood. N ew York: C oward M cC ann \& Georghegan, Inc., 1960.

Zim, H erbert S. Your H eart and How It Works. N ew York: William M orrow and Co., 1959.
This is only a beginning! Your local library will have many, many good books describing the circulatory system. Spend as much time reading and expanding the ideas of this unit as your child's interest will allow.

CONTACT THE AM ERICAN HEART ASSO CIATION for additional information.
Their number is 1-214-373-6300. Their address is 7320 Greenville Ave., D allas, Texas 75231.

FIELD TRIPS to your local hospital or blood bank would be very profitable. You may even want to have your personal physician type your child's blood.

