LIFFEPAC Math

MATHEMATICS 1204 THE CIRCULAR FUNCTIONS AND THEIR GRAPHS
 CONTENTS

I. THE CIRCULAR FUNCTIONS 2
II. CIRCULAR FUNCTIONS OF SPECIAL ANGLES 6
III. GRAPHS OF SIN AND COS 10
IV. OTHER GRAPHS 14
v. APPLICATIONS 18
VI. AMPLITUDE OF CIRCULAR FUNCTIONS 22
VII. PERIOD OF CIRCULAR FUNCTIONS 27
VIII. PHASE SHIFT OF CIRCULAR FUNCTIONS 32

Author:

Editor-In-Chief:
Editor:
Consulting Editor:
Illustrator:

Larry L. Welch, M.A.
Richard W. Wheeler, M.A.Ed.
Robin Hintze Kreutzberg, M.B.A.
Robert L. Zenor, M.A., M.S.
Thomas Rush

$\overline{\text { Alpha Omega Publications }}$
804 N. 2nd Ave. E., Rock Rapids, IA 51246-1759
© MM by Alpha Omega Publications, Inc. All rights reserved. LIFEPAC is a registered trademark of Alpha Omega Publications, Inc.

THE CIRCULAR FUNCTIONS AND THEIR GRAPHS

The trigonometric functions have been defined and developed by means of the (u, v) coordinate axis. This method involves the use of a central angle in degrees. The u-axis and v-axis were of different units of measure. For the functions and their graphs, we must use the same unit of measure. For example, in the equation $y=\sin x, x$ and y must be of the same
unit of measure; therefore, we shall use the radian unit of measure for x that was defined and developed in the previous LIFEPAC. ${ }^{\circledR}$ In graphing the trigonometric functions, we shall also discuss the various constants A, B, and C that describe the more general form of the function, such as $y=A \sin (B x+C)$.

OBJECTIVES

Read these objectives. The objectives tell you what you should be able to do when you have successfully completed this LIFEPAC.

When you have completed this LIFEPAC, you should be able to:

1. Convert radian measure to angle measure and, conversely, convert angle measure to radian measure.
2. Graph the six trigonometric functions.
3. Identify the amplitude of a trigonometric function, and graph the functions with various amplitudes.
4. Identify the period of a trigonometric function, and graph the functions with various periods.
5. Identify the phase shift of a trigonometric function, and graph the functions with various phase shifts.

I. THE CIRCULAR FUNCTIONS

DEFINITION

A unit circle is a circle whose radius is one.

The circumference C of the unit circle is given by the formula $2 \pi r$; hence, $C=2 \pi$. Let C be the unit circle with its center at $0(0,0)$ of a rectangular coordinate system. Choose $\mathrm{T}(u, v)$, any point on C.

The arc length from $\mathrm{P}(1,0)$ to T will be designated by x. When x measures the distance on C from $P(1,0)$ to a point, which lies within a given quadrant (I, II, III, IV), x is said to be in that quadrant.

IN THE FOLLOWING EXAMPLES, IDENTIFY THE QUADRANT IN WHICH x IS LOCATED:

x is located in the second quadrant
(b)

[^0](c)

$-x$ is located in the third quadrant
(d)

x is located in the fourth quadrant

DEFINITION
If C is the circle with equation $u^{2}+v^{2}=1$ and x is the distance along C from $\mathrm{P}(1,0)$ to $\mathrm{T}(u, v)$, then:

$$
\begin{aligned}
& \operatorname{cosin} e=\{(x, u): u=\cos x\} \\
& \text { sine }=\{(x, u): v=\sin x\}
\end{aligned}
$$

As the unit circle is involved in these

Figure 1 definitions, the sine and cosine are referred to as circular functions.

The domain x is the set of all arc lengths of the unit circle. Each arc length is represented by a real number. Hence, the domain is the set of real numbers.

Figure 1 defines the positive arc length in each of the four quadrants. The values of x that terminate on the coordinate axis are $\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, and 2π 。

STUDY THESE EXAMPLES:

$\frac{\pi}{4} \quad \frac{\pi}{4}$ lies between 0 and $\frac{\pi}{2}$. Hence, $\frac{\pi}{4}$ is located in the first quadrant.

$$
\begin{aligned}
& \frac{5 \pi}{6} \quad \frac{5 \pi}{6} \text { lies between } \frac{\pi}{2} \text { and } \pi \text {. Hence, } \frac{5 \pi}{6} \text { is located in } \\
& \text { the second quadrant. }
\end{aligned}
$$

If T IS the point at the given distance on the untt CIrcle C From P(1, 0), determine the QUADRANT IN WHICH T LIES:
$1.1 \frac{\pi}{6}$ \qquad
$1.3 \frac{5 \pi}{6}$ \qquad $1.5 \frac{7 \pi}{4}$ \qquad $1.7 \quad \frac{4 \pi}{3}$ \qquad $1.9 \frac{5 \pi}{4}$ \qquad
$1.2 \quad \frac{3 \pi}{4}$ \qquad
$1.4 \frac{2 \pi}{3}$ \qquad $1.6 \quad \frac{\pi}{3}$ \qquad $1.8 \frac{11 \pi}{6}$ \qquad $1.10 \frac{13 \pi}{12}$ \qquad

The following diagrams show the symmetry of C with respect to the u, v axes.

In the following example, determine the coordinates of $\pi+x$ if x is the distance from $\mathrm{P}(1,0)$ to $\mathrm{T}\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$:

Answer: $\quad T^{\prime}\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
If on C THE DISTANCE fROM $P(1,0)$ TO THE POINT T IS x, DETERMINE THE COORDINATES OF THE POINTS AT THE INDICATED DISTANCE ON C FROM P:
$1.11 \mathrm{~T}\left(\frac{3}{5}, \frac{4}{5}\right)$
a. $\pi+x$ \qquad c. $\pi-x$ \qquad $1.12 \mathrm{~T}\left(\frac{12}{13}, \frac{5}{13}\right)$
a. $\pi+x$ \qquad c. $\pi-x$ \qquad
b. $-x$ \qquad d. $2 \pi+x$ \qquad d. $x-\pi$ \qquad

Review the material in this section in preparation for the Self Test. The Self Test will check your mastery of this particular section. The items missed on this Self Test will indicate specific areas where restudy is needed for mastery.

[^0]: x is located in the first quadrant

