

Alpha Onoge Publicationst

SCIENCE 1205 LIGHT

CONTENTS

I. SPEED AND PROPERTIES 2
Speed 2
Properties 4
II. MIRRORS AND LENSES 19
Mirrors 19
Lenses 25
III. PHENOMENA AND MODELS 33
Phenomena of Light 33
Models of Light 38
GLOSSARY 44

Author:

Editor:
Illustrations:

Mary Grace Ferriera, M.A.T., M.N.S.
Alan Christopherson, M.S.
Juanita Farmer
Alpha Omega Graphics

Alpha Omega Publications ${ }^{\bullet}$
804 N. 2nd Ave. E., Rock Rapids, IA 51246-1759
© MM by Alpha Omega Publications, Inc. All rights reserved.
LIFEPAC is a registered trademark of Alpha Omega Publications, Inc.

LIGHT

In the beginning after God formed the heaven and the earth, He created light and called it Day and said it was good (Genesis 1:3). Light is not only a means by which to see, but also it is a phenomenon to experience. In this LIFEPAC ${ }^{\circledR}$ you
will study some of the characteristics and properties of light, its phenomena, and its behavior with mirrors and lenses. Finally, the question will be raised: What is light?

OBJECTIVES

Read these objectives. The objectives tell you what you will be able to do when you have successfully completed this LIFEPAC.

When you have finished this LIFEPAC, you should be able to:

1. Relate the history of measuring the speed of light.
2. Solve problems involving the velocity, wavelength, and frequency of light.
3. Solve problems involving the index of refraction of light.
4. Explain polarization, dispersion, and scattering.
5. Draw ray diagrams for mirrors and lenses.
6. Solve problems involving mirrors and lenses.
7. Explain diffraction and interference.
8. List evidence for the wave nature and the particle nature of light.

Survey the LIFEPAC. Ask yourself some questions about this study. Write your questions here.
\qquad

I. SPEED AND PROPERTIES

Like waves, light exhibits the properties of reflection and refraction. In addition, light also displays polarization, dispersion, scattering, and color. Reflection is the return of incident light from a surface. Refraction occurs when light is bent when passing from one medium into another, or as it
passes through a nonuniform medium. In polarization, light vibrates in a single plane. The splitting of a beam of light through a prism is called dispersion. Scattering accounts for the red sunrises and sunsets with blue midday skies. Color is a property of frequency and wavelength.

SECTION OBJECTIVES

Review these objectives. When you have completed this section, you should be able to:

1. Relate the history of measuring the speed of light.
2. Solve problems involving the velocity, wavelength, and frequency of light.
3. Solve problems involving the index of refraction of light.
4. Explain polarization, dispersion, and scattering.

VOCABULARY

Study these words to enhance your learning success in this section.

angle of incidence	mirage
angle of reflection	normal
angle of refraction	polarization
dispersion	scattering
index of refraction	total internal reflection

looming
Note: All vocabulary words in this LIFEPAC appear in boldface print the first time they are used. It you are unsure of the meaning when you are reading, study the definitions given.

SPEED

Light travels at the ultimate speed. Nothing known travels faster than light in the vacuum of space. Because light has wave characteristics, light was thought to require a material medium. When no matter could be detected in space, a propertyless substance, ether, was postulated as filling all space. Subsequent experiments have disproved the existence of ether in space, and have shown that the wave type of which light is a part needs no material medium.

History. It is difficult to know who the first individual was to attempt to measure the speed of light (some of the ancients thought that light was instantaneous), but Galileo is the first on written record to attempt it. He and an assistant carried lanterns to two hills a known distance apart. As his assistant uncovered his lantern, he was to start a clock. When Galileo saw his assistant's lamp, he was to uncover his own lamp. The clock would be stopped when the assistant saw the light that Galileo uncovered. Man's reaction time is much slower than the speed of light and the experiment was a failure, except to prove that the speed of light is indeed very fast.

In 1676 Olaus Roemer, a Danish astronomer, proposed to measure the speed of light using large distances in order that reaction time should not be a crucial factor. He observed that the satellites (moons) of Jupiter were eclipsed at regular intervals by the planet. He timed the revolutions of several of its moons and discovered that when the earth was near Jupiter, the eclipses occurred 11 minutes earlier than expected; and when the earth was farthest in its orbit, they occurred 11 minutes later because light had to pass from Jupiter across the earth's orbit to the observer. An error was inherent because the diameter of the earth's orbit was not accurately known. Accurate data yields $16^{1 / 3}$ minutes for light to cross earth's orbit and not the 22 minutes that Roemer found. The diameter of the earth's orbit is $2.94 \cdot 10^{11} \mathrm{~m}$; therefore,

$$
\begin{aligned}
\mathrm{v} & ={ }^{d} / t \\
& =\frac{2.94 \cdot 10^{11} \mathrm{~m}}{980 \mathrm{sec}} \\
& =\frac{3 \cdot 10^{8} \mathrm{~m}}{\text { sec. }}
\end{aligned}
$$

The letter c denotes the velocity of light in a vacuum.

$$
c=3 \cdot 10^{8 \mathrm{~m} / \mathrm{sec}}
$$

In 1848 Fizeau calculated the speed of light over a short distance. The most famous of all the speed of light experiments was performed in 1880 by Albert Michelson by bouncing flashes of light from an octagonal (8-sided) mirror to a plane mirror 22
miles away. The reflected light returned to the rotating mirror. When an observer saw the reflected light in the rotating mirror, the time for the light to travel 44 miles was equal to the time for the mirror to turn $1 / 8$ of a revolution. Michelson calculated the speed of light to be $186,364 \mathrm{mi} / \mathrm{sec}$. In 1907 he received the Nobel prize for this experiment becoming the first American physicist to receive this prize The speed of light is usually rounded to $186,000 \mathrm{mi} / \mathrm{sec}$, or $1.86 \cdot 10^{5} \mathrm{mi} / \mathrm{sec}$, which is equivalent to $3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec}$.

Prepare a report.

1.1

In 1677 Christiaan Huygens advocated a wave model for light, which was a radical concept for that day. Prepare a report on the life and revolutionary theories of this man. Submit a five-page, double-spaced, handwritten report for evaluation.

Score Adult check
$\overline{\text { Initial Date }}$

Answer these questions.

If Galileo's experiment did not measure the speed of light, what did it measure; and what did it prove concerning the speed of light?
\qquad
1.3 What symbol is used to denote the velocity of light in a vacuum, and what is its speed in a vacuum in $\mathrm{m} / \mathrm{sec}$ and $\mathrm{mi} / \mathrm{sec}$?
\qquad
\qquad
1.4 What is the significance of the Michelson experiment of 1880 ?

Measurement. With means now available to measure the speed of light, light was discovered to travel fastest in a vacuum and slower through a material medium. In water the speed of light is $2.25 \cdot 10^{8} \mathrm{~m} / \mathrm{sec}$, and in glass it is about $2.0 \cdot 10^{8} \mathrm{~m} / \mathrm{sec}$
(this figure varies depending on the composition of the glass). Nothing discovered travels faster than light in a vacuum; high energy particles can travel faster than light in water, however.

Complete this activity.
1.5

If an unknown, transparent substance existed in which the speed of light were to be measured, comment on what you would expect the results to show.

PROPERTIES

Under varying circumstances light exhibits some unexpected properties. Only the ones that are readily observable will be studied. For the purpose of study, a ray is the vector that describes the direction of light transmission. A ray describes the movement of a wave and is therefore perpendicular to a wave front.

Reflection. When a particle, such as a ball, hits a wall at any given angle, the particle reflects along a path that forms the same angle with the wall as did the incident path. In Science LIFEPAC 1204, wave fronts at a reflecting barrier were shown to have the same consistent relationship.

Try this investigation. You will study the angles that light makes as it is incident on a mirror.

These supplies are needed:

mirror	ruler
pencil	protractor
flashlight	ball bearing
sheet of paper	

Follow these directions and answer the questions. Put a check in the box when each step is completed.

- 1. Shine a pencil-thin beam of light on a mirror perpendicular to its surface.
1.6

How does the light reflect?
1.7

How does the relationship of incident to reflected ray relate to the reflection of water waves moving perpendicular to a barrier?

- 2. Shine a pencil-thin beam of light on a mirror standing on a sheet of paper on the table (or floor) so that you can mark the incident ray and reflected ray.

3. Mark a line on the paper representing the reflective surface. (The reflective surface of a mirror is usually the back edge.)
