- 3. In the diagram, $\overrightarrow{AB} = \mathbf{u}$, $\overrightarrow{BC} = \mathbf{v}$ and $\overrightarrow{CD} = \mathbf{w}$.
 - Express each of the following as a single vector. (a) (i) $\mathbf{u} + \mathbf{v}$
 - $\mathbf{u} + \mathbf{v} = \overrightarrow{AB} + \overrightarrow{BC}$ $= \overrightarrow{AC}$ $\mathbf{v} + \mathbf{w} = \overrightarrow{BC} + \overrightarrow{CD}$ $= \overrightarrow{BD}$ (iii) (u + v) + w(iv) u + (v + w) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \overrightarrow{AC} + \mathbf{w}$ = \overrightarrow{AD} $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = \mathbf{u} + \overrightarrow{BD} \\ = \overrightarrow{AD}$

(ii) $\mathbf{v} + \mathbf{w}$

What is the relationship between $(\mathbf{u} + \mathbf{v}) + \mathbf{w}$ and $\mathbf{u} + (\mathbf{v} + \mathbf{w})$? **(b)**

From (a), (u + v) + w = u + (v + w). i.e. addition of vectors satisfies the associative law.

Class Activity 2

- In the following diagram, the vector PQ = u.
 (a) On a piece of graph paper, copy the diagram and draw the following vectors.
 - (ii) $\frac{1}{2}$ **u** (i) 3**u**
 - (b) Draw the following vectors on the same piece of graph paper in (a).

What is the relationship between the vectors, $\frac{1}{2}(3\mathbf{u})$, $3\left(\frac{1}{2}\mathbf{u}\right)$ and $\left(3 \times \frac{1}{2}\right)\mathbf{u}$? (c) $\frac{1}{2}(3\mathbf{u}) = 3\left(\frac{1}{2}\mathbf{u}\right) = \left(3 \times \frac{1}{2}\right)\mathbf{u}$

