3. In the diagram, $\overrightarrow{A B}=\mathbf{u}, \overrightarrow{B C}=\mathbf{v}$ and $\overrightarrow{C D}=\mathbf{w}$.
(a) Express each of the following as a single vector.
(i) $\mathbf{u}+\mathbf{v}$

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\overrightarrow{A B}+\overrightarrow{B C} \\
& =\overrightarrow{A C}
\end{aligned}
$$

(ii) $\mathbf{v}+\mathbf{w}$

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\overrightarrow{B C}+\overrightarrow{C D} \\
& =\overrightarrow{B D}
\end{aligned}
$$

(iii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}$

$$
\begin{aligned}
(\mathbf{u}+\mathbf{v})+\mathbf{w} & =\overrightarrow{A C}+\mathbf{w} \\
& =\overrightarrow{A D}
\end{aligned}
$$

(iv) $\mathbf{u}+(\mathbf{v}+\mathbf{w})$

$$
\begin{aligned}
\mathbf{u}+(\mathbf{v}+\mathbf{w}) & =\mathbf{u}+\overrightarrow{B D} \\
& =\overrightarrow{A D}
\end{aligned}
$$

(b) What is the relationship between $(\mathbf{u}+\mathbf{v})+\mathbf{w}$ and $\mathbf{u}+(\mathbf{v}+\mathbf{w})$?

From (a), $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
i.e. addition of vectors satisfies the associative law.

Class Activity 2

1. In the following diagram, the vector $\overrightarrow{P Q}=\mathbf{u}$.
(a) On a piece of graph paper, copy the diagram and draw the following vectors.
(i) $3 \mathbf{u}$
(ii) $\frac{1}{2} \mathbf{u}$
(b) Draw the following vectors on the same piece of graph paper in (a).
(i) $\frac{1}{2}(3 \mathbf{u})$
(ii) $3\left(\frac{1}{2} \mathbf{u}\right)$
(iii) $\left(3 \times \frac{1}{2}\right) \mathbf{u}$

(c) What is the relationship between the vectors, $\frac{1}{2}(3 \mathbf{u}), 3\left(\frac{1}{2} \mathbf{u}\right)$ and $\left(3 \times \frac{1}{2}\right) \mathbf{u}$?

$$
\frac{1}{2}(3 \mathbf{u})=3\left(\frac{1}{2} \mathbf{u}\right)=\left(3 \times \frac{1}{2}\right) \mathbf{u}
$$

