Chapter 4 Vectors In Two Dimensions

Class Activity 1

1.

In the diagram, $A B C D$ is a parallelogram. Let $\overrightarrow{A B}=\mathbf{u}$ and $\overrightarrow{A D}=\mathbf{v}$.
(a) Express each of the following as a single vector.
(i) $\overrightarrow{A B}+\overrightarrow{B C}$
(ii) $\overrightarrow{A D}+\overrightarrow{D C}$

$$
\begin{aligned}
\overrightarrow{A B}+\overrightarrow{B C} & =\overrightarrow{A B}+\overrightarrow{A D} \\
& =\overrightarrow{A C}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{A D}+\overrightarrow{D C} & =\overrightarrow{A D}+\overrightarrow{A B} \\
& =\overrightarrow{A C}
\end{aligned}
$$

(b) Express the following in terms of \mathbf{u} and \mathbf{v}.
(i) $\overrightarrow{A B}+\overrightarrow{B C}$
(ii) $\overrightarrow{A D}+\overrightarrow{D C}$
$\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A B}+\overrightarrow{A D}$
$\overrightarrow{A D}+\overrightarrow{D C}=\overrightarrow{A D}+\overrightarrow{A B}$
$=\mathbf{u}+\mathbf{v}$
$=\mathbf{v}+\mathbf{u}$
(c) What is the relationship between $\mathbf{u}+\mathbf{v}$ and $\mathbf{v}+\mathbf{u}$?

As $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A D}+\overrightarrow{D C}=\overrightarrow{A C}$, we have $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
i.e. addition of vectors satisfies the commutative law.
2.

The diagram shows two straight lines $A B C$ and $P Q R$ with $A B=Q R$ and $B C=P Q$.
(a) Express each of the following as a single vector.
(i) $\overrightarrow{A B}+\overrightarrow{B C}$
(ii) $\overrightarrow{P Q}+\overrightarrow{Q R}$
$\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$

$$
\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}
$$

(b) Does the triangle law of vector addition hold in each of the above cases?

Yes, the triangle law of vector addition holds.

