

Chapter 4 Vectors In Two Dimensions

(ii) $\overrightarrow{AD} + \overrightarrow{DC}$

 $\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{AB}$ $= \mathbf{v} + \mathbf{u}$

In the diagram, *ABCD* is a parallelogram. Let $\overrightarrow{AB} = \mathbf{u}$ and $\overrightarrow{AD} = \mathbf{v}$. (a) Express each of the following as a single vector.

- (i) $\overrightarrow{AB} + \overrightarrow{BC}$ (ii) $\overrightarrow{AD} + \overrightarrow{DC}$ (ii) $\overrightarrow{AD} + \overrightarrow{DC}$ $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AD}$ $= \overrightarrow{AC}$ (ii) $\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{AB}$ $= \overrightarrow{AC}$
- (b) Express the following in terms of **u** and **v**. (i) $\overrightarrow{AB} + \overrightarrow{BC}$ $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AD}$

$$B + BC = AB + AD$$
$$= \mathbf{u} + \mathbf{v}$$

(c) What is the relationship between $\mathbf{u} + \mathbf{v}$ and $\mathbf{v} + \mathbf{u}$?

As $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$, we have $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$. i.e. addition of vectors satisfies the commutative law.

2.

 \overrightarrow{A} \overrightarrow{B} \overrightarrow{C} \overrightarrow{P} \overrightarrow{Q} \overrightarrow{R}

The diagram shows two straight lines *ABC* and *PQR* with AB = QR and BC = PQ.

- (a) Express each of the following as a single vector. (i) $\overrightarrow{AB} + \overrightarrow{BC}$ (ii) $\overrightarrow{PQ} + \overrightarrow{QR}$ $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$
- (b) Does the triangle law of vector addition hold in each of the above cases? Yes, the triangle law of vector addition holds.