Brainworks

7. The diagram shows a vector $\overrightarrow{A B}$.
(a) Draw a vector $\overrightarrow{C D}$ which is equal to $\overrightarrow{A B}$.
(b) Draw a vector $\overrightarrow{E F}$ such that $|\overrightarrow{E F}|=|\overrightarrow{A B}|$, but $\overrightarrow{E F} \neq \overrightarrow{A B}$.
(c) Draw a vector $\overrightarrow{G H}$ such that $|\overrightarrow{G H}| \neq|\overrightarrow{A B}|$, but $\overrightarrow{G H}$ and $\overrightarrow{A B}$ are in the same direction.

4.2 Operations On Vectors

A. Addition

If an object is translated from A to B, and then from B to C, the combined effect is a translation from A to C. Therefore, we refer to the combined effect as the addition of vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$, and the addition is defined as

$$
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C} .
$$

$\overrightarrow{A C}$ is called the sum or the resultant of the vectors $\overrightarrow{A B}$ and $\overrightarrow{B C} \cdot \overrightarrow{A C}$ is also the single translation that moves the object directly from A to C. This rule is known as the triangle law of vector addition.

Notice that, for the sum $\overrightarrow{A B}+\overrightarrow{B C}, B$ is the intermediate point. That means, the terminal point of the vector $\overrightarrow{A B}$ is connected to the initial point of the vector $\overrightarrow{B C}$.

Now, consider the sum of the vectors $\overrightarrow{A B}$ and $\overrightarrow{A D}$ with the common initial point A. We construct a parallelogram $A B C D$ with adjacent sides $B C$ and $C D$ as shown.

Then

$$
\overrightarrow{A D}=\overrightarrow{B C} \quad \text { (opposite sides of parallelogram) }
$$

$\begin{aligned} \therefore \quad \overrightarrow{A B}+\overrightarrow{A D} & =\overrightarrow{A B}+\overrightarrow{B C} \\ & =\overrightarrow{A C} \quad \text { (triangle law of vector addition) }\end{aligned}$

i.e.

$$
\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A C}
$$

where $A C$ is the diagonal of the parallelogram $A B C D$. This is known as the parallelogram law of vector addition.

