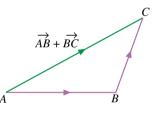

Brainworks

- 7. The diagram shows a vector \overrightarrow{AB} .
 - (a) Draw a vector \overrightarrow{CD} which is equal to \overrightarrow{AB} .
 - (**b**) Draw a vector \overrightarrow{EF} such that $|\overrightarrow{EF}| = |\overrightarrow{AB}|$, but $\overrightarrow{EF} \neq \overrightarrow{AB}$.
 - (c) Draw a vector \overrightarrow{GH} such that $|\overrightarrow{GH}| \neq |\overrightarrow{AB}|$, but \overrightarrow{GH} and \overrightarrow{AB} are in the same direction.



4.2 Operations On Vectors

A. Addition

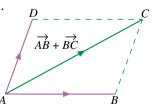
If an object is translated from A to B, and then from B to C, the combined effect is a translation from A to C. Therefore, we refer to the combined effect as the addition of vectors \overrightarrow{AB} and \overrightarrow{BC} , and the addition is defined as

 \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} .

 \overrightarrow{AC} is called the **sum** or the **resultant** of the vectors \overrightarrow{AB} and \overrightarrow{BC} . \overrightarrow{AC} is also the single translation that moves the object directly from A to C. This rule is known as the **triangle law of vector addition**.

Notice that, for the sum $\overrightarrow{AB} + \overrightarrow{BC}$, *B* is the intermediate point. That means, the terminal point of the vector \overrightarrow{AB} is connected to the initial point of the vector \overrightarrow{BC} .

Now, consider the sum of the vectors \overrightarrow{AB} and \overrightarrow{AD} with the common initial point A. We construct a parallelogram ABCD with adjacent sides BC and CD as shown.


Then

...

i.e.

$$\overrightarrow{AD} = \overrightarrow{BC} \quad \text{(opposite sides of parallelogram)}$$

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$= \overrightarrow{AC} \quad \text{(triangle law of vector addition)}$$

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

where AC is the diagonal of the parallelogram ABCD. This is known as the parallelogram law of vector addition.

