2

In general, the expression $x^{2}+b x$ becomes a perfect square when $\left(\frac{b}{2}\right)^{2}$ is added to it.

Thus,

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

Solving a quadratic equation using this approach is called the completing the square method.

Example 7 Solve the equation $x^{2}+6 x-7=0$ by the completing the square method.

Solution

$$
\begin{aligned}
& x^{2}+6 x-7=0 \\
& x^{2}+6 x=7 \quad \text { Move the constant term to the RHS. } \\
& x^{2}+6 x+\left(\frac{6}{2}\right)^{2}=7+\left(\frac{6}{2}\right)^{2} \quad \text { Add }\left(\frac{6}{2}\right)^{2} \text { to both sides. } \\
& x^{2}+6 x+3^{2}=7+3^{2} \quad \text { Write the LHS as a perfect square. } \\
& (x+3)^{2}=16 \quad \text { Take the square root of both sides. } \\
& \therefore \quad x+3= \pm \sqrt{16} \\
& x+3=4 \text { or } x+3=-4 \\
& \therefore \quad x=1 \quad \text { or } \quad x=-7
\end{aligned}
$$

Note: The equation $x^{2}+6 x-7=0$ can be solved by the factorisation method.
Try It 7! Solve the equation $x^{2}+2 x-15=0$ by the completing the square method.

Example 8 Solve the equation $x^{2}-x-3=0$ by the completing the square method.
Solution

$$
\begin{aligned}
& x^{2}-x-3=0 \\
& x^{2}-x=3 \quad b=-1 \\
& x^{2}-x+\left(-\frac{1}{2}\right)^{2}=3+\left(-\frac{1}{2}\right)^{2} \quad\left(\frac{b}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{13}{4} \\
& x-\frac{1}{2}= \pm \sqrt{\frac{13}{4}} \\
& \therefore \quad x-\frac{1}{2}=-\frac{\sqrt{13}}{2} \quad \text { or } x-\frac{1}{2}=\frac{\sqrt{13}}{2} \\
& x=\frac{1}{2}-\frac{\sqrt{13}}{2} \text { or } x=\frac{1}{2}+\frac{\sqrt{13}}{2} \\
& \therefore \quad x=-1.30 \quad \text { or } x=2.30 \quad \text { (correct to } 3 \text { sig. fig.) }
\end{aligned}
$$

Try It 8! Solve the equation $x^{2}-3 x-5=0$ by the completing the square method.

Compare this solution with that in Example 4 for the same equation.

A number in the form $a+b \sqrt{n}$, is called a number in surd form, where a and b are integers or fractions, $b \neq 0, n$ is a positive integer and \sqrt{n} is not an integer.

MathsBits

