183 Problem set 34

Problem set 34

 The pressure of an ideal gas varies directly as the temperature and inversely as the volume. If the initial pressure, volume, and temperature were N newtons per square meter, L liters, and K° kelvin, what would the pressure be if the volume were 4 liters and the temperature were 1000° kelvin?

 Write the key identities for practice, and then develop identities for tan (A + B) and tan (A - B).

 Use the sum identity for the tangent function to find the exact value of tan 75°. [Hint: tan 75° = tan (45° + 30°).]

4. Find the surface area of a sphere whose volume is $\frac{4}{3}\pi$ cubic meters.

 Find the volume of a right circular cone whose base has an area of 4π square centimeters and whose height is 4 centimeters.

Find the volume of a trough 5 meters long whose ends are equilateral triangles, each of whose sides has a length of 2 meters.

Use the power rule of differentiation to differentiate.

7. Find
$$\frac{dy}{dx}$$
 if $y = \frac{1}{x^3}$.

8. Find f'(x) if $f(x) = \sqrt{x^3}$.

9. Find
$$\frac{ds}{dt}$$
 if $s(t) = \frac{1}{\sqrt{t}}$.

10. Find $D_x y$ if $y = x^{14}$.

11. Express the four fourth roots of $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ in polar form.

Find all values of x which lie between 0 and 2π which satisfy the equation cos 3x = ½.

The general equation of a conic section is x² + y² - 2x + 4y - 4 = 0. Write this
equation in standard form and fully describe the conic section.

14. Find all integer values of x which satisfy the inequality |x-2| > -1.

15. Find the coefficient of x^3y^2 in the expansion of $(x-2y)^5$.

16. If $f(x) = \sqrt{x}$ and g(x) = f(x + 2) + 2, graph both f and g on the same coordinate plane.

Evaluate the following limits:

17.
$$\lim_{x\to 1} \frac{x^2-1}{x^2+2x-3}$$

18.
$$\lim_{n \to \infty} \frac{(n+1)(n-3)}{2-n^2}$$

19. Graph f(x) = [x] and evaluate f(1.2), f(-1.5), and $f(-2\frac{1}{2})$.

20. Find the distance between the point (2, 3) and the line 5y = 12x + 4.

CONCEPT REVIEW

- Find the radius of the circle if AB = 8 and OD = 3.
- Find the sum of all the terms of the geometric sequence {1, \(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}{8}\), \(\cdots\)}.

