TABLE OF CONTENTS

Unit 1 Atoms & Molecules	
Lesson 1 Introduction to Chemistry	8
Lesson 2 Atoms	10
Lesson 3 Atomic Mass	14
Special Feature Madame Curie	16
Lesson 4 Molecules	18
Unit 2 Elements	
Lesson 5 Periodic Table of the Elements	22
Special Feature: Development of the Periodic Table	27
Lesson 6 Metals	28
Lesson 7 Nonmetals	31
Lesson 8 Hydrogen	35
Lesson 9 Carbon	38
Lesson 10 Oxygen	41
Unit 3 Bonding	
Lesson 11 lonic Bonding	45
Lesson 12 Covalent Bonding	49
Lesson 13 Metallic Bonding	52
Lesson 14 Mining & Metal Alloys	54
Special Feature Charles Martin Hall	57
Lesson 15 Crystals	59
Lesson 16 Ceramics	63

Unit 4 Chemic	al Reactions	
Lesson 17	Chemical Reactions	67
Lesson 18	Chemical Equations	71
Lesson 19	Catalysts	75
Lesson 20	Endothermic & Exothermic Reactions	79
Unit 5 Acids &	RASES	
		0.4
Lesson 21	,	84
Lesson 22	Acids	87
	Bases	90
Lesson 24	Salts	93
Special Fea	ture Batteries	96
Unit 6 Bioche	MISTRY	
Lesson 25	Biochemistry	99
Lesson 26	Decomposers	103
Lesson 27	Chemicals in Farming	106
Lesson 28	Medicines	
Special Fea	ture Alexander Fleming	113
Unit 7 Applications of Chemistry		
	Perfumes	
Lesson 30	Rubber	119
Special Fea	ture Charles Goodyear	123
Lesson 31	Plastics	125
Lesson 32	Fireworks	128
Lesson 33	Rocket Fuel	131
Lesson 34	Fun With Chemistry—Final Project	134
Lesson 35	Conclusion	137
Glossary		138
Index		142

ou are about to start an exciting series of lessons on chemistry and ecology. God's Design* for Chemistry & Ecology consists of three books: Properties of Matter, Properties of Atoms and Molecules, and Properties of Ecosystems. Each of these books will give you insight into how God designed and created our world and the universe in which we live.

No matter what grade you are in, third through eighth grade, you can use this book.

3rd-5th grade

Read the lesson and then do the activity in the box (the worksheets will be provided by your teacher). After you complete the activity, test your understanding by answering the questions in the box. Be sure to read the special features and do the final project.

6th-8th grade

Read the lesson and then do the activity in the box. After you complete the activity, test your understanding by answering the questions in the box. Also do the "Challenge" section in the box. This part of the lesson will challenge you to do more advanced activities and learn additional interesting information. Be sure to read the special features and do the final project.

There are also unit quizzes and a final test to take.

Throughout this book you will see special icons like the one to the right. These icons tell you how the information in the lessons fit into the Seven C's of History: Creation, Corruption, Catastrophe, Confusion, Christ, Cross, Consummation. Your teacher will explain these to you.

When you truly understand how God has designed everything in our universe to work together, and how He is working out His plans, then you will enjoy the world around you even more. So let's get started!

What is chemistry?

Words to know:

chemistry

matter

chemist

hemistry may sound like a big word and a difficult subject to study, but it's not. **Chemistry** is simply the study of matter, and **matter** is anything that has mass and takes up space. Some examples of matter are water, wood, air, food, paper, your pet skunk, or your little brother. So if you are interested in learning more about anything around you, then you are ready to learn about chemistry.

Chemists are scientists who study what things are made of, how they react to each other, and how they react to their environment. Chemistry is the study of the basic building blocks of life and the world.

In chemistry you will learn about atoms and molecules. You will learn about how substances combine to make other substances. You will find out how a substance changes form and you will discover that God created our world with such intricate designs that we may never fully understand how everything works.

God has established laws that govern how chemicals react and how matter changes. Many of these laws seem mysterious because they happen on an atomic level. Although these changes cannot be seen with the naked eye, the results of these laws can be seen all around us. As you study atoms and molecules you will begin to understand these laws and appreciate the beauty of God's design on the atomic level.

CHEMISTRY IS FUN

As you will learn in the upcoming lessons, some materials are very stable and do not change easily. Other materials are very reactive and easily combine with other substances to make a new substance.

Purpose: To see a chemical reaction

Materials: baking soda, drinking cup, vinegar

Procedure:

- 1. Place 1 teaspoon of baking soda in a drinking cup.
- 2. Pour 1 tablespoon of vinegar into the cup. Now watch the reaction!

Conclusion: Vinegar is an acid and baking soda is a base. Acids and bases easily combine together to form salts. In this reaction they also produce a gas. Can you guess what that gas might be? It is carbon dioxide.

WHAT DID WE LEARN?

- · What is matter?
- Does air have mass?
- What do chemists study?

TAKING IT FURTHER

 Would you expect to see the same reaction each time you combine baking soda and vinegar?

SODA FOUNTAIN

For an even more impressive chemical reaction, you can make a Mentos and diet soda fountain. This chemical reaction is very messy so this experiment must be done outside. This experiment happens quickly so you want to have everything ready before you start. Read through the directions below before you try the experiment so you know what to do.

Purpose: To make a diet soda fountain

Materials: 2-liter bottle of diet cola, heavy paper, tape, toothpick, Mentos mints

Procedure:

- 1. Remove the cap from a 2-liter bottle of diet cola.
- 2. Make a tube to hold the mints: roll a piece of heavy paper into a tube that just fits around the mouth of the soda bottle. Tape the paper so it stays rolled up.
- 3. Use a toothpick to punch holes through the bottom of the tube just above the mouth of the bottle so that the toothpick goes through the tube and holds the mints in place.
- 4. Load up your tube with four or more mints.

- 5. Quickly remove the toothpick and step back so you don't get sprayed. You should see a fountain of soda.
- 6. Be sure to clean up your mess when you are done. Now, don't you think chemistry is fun?

